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ABSTRACT

Commonsense reasoning has long been a challenging yet vital artificial intelligence problem.

In the past few decades, many efforts have been devoted to investigating how to represent, acquire,

and apply commonsense knowledge to understand human language. Recently, with the help of

large-scale pre-trained language models, the community has made significant progress on many

commonsense reasoning benchmarks. However, due to the non-explainability of deep models,

it is still unclear whether current models are solving these commonsense reasoning tasks with

the correct reason or not. In this thesis, we first conduct experiments to show that even though

current deep models can achieve high performance on the original WSC task, they cannot efficiently

distinguish the right reasons.

An important reason behind this is that we are lack of a good commonsense representation

methodology and a principled commonsense inference methodology. To fill this gap, in this thesis,

we propose a new commonsense representation methodology, higher-order selectional preference

over eventualities, to model the complex commonsense in our daily life. Following this principle,

we developed a scalable eventuality-centric commonsense knowledge extraction pipeline. As a

result, we created ASER, which is the largest eventuality-centric knowledge graph in the world.

xvii



Specifically, it contains 438 million eventualities and 648 million edges among them. Both intrinsic

and extrinsic evaluations were conducted to demonstrate the high quality of ASER. We also conduct

further experiments to prove the transferability from the selectional preference knowledge in ASER

to human-defined commonsense.

On top of ASER, we also explored how to acquire commonsense knowledge from different

modalities. Specifically, we first propose a multiplex word embedding model to acquire selectional

preference knowledge from text more efficiently. After that, we also introduce how we can leverage

the help of analogy and eventuality conceptualization to generalize the knowledge about observed

eventualities to unseen ones. Last but not least, we investigate the possibility of acquiring causal

knowledge about daily eventualities from the visual signal.

After collecting the knowledge, we also need to apply the structured commonsense for down-

stream natural language understanding tasks. Thus, in the last part of this thesis, we first use pro-

noun coreference resolution as the downstream task to investigate how to jointly use the structured

knowledge and language representation models for better language understanding. In the end, to

explore a commonsense inference model that can be applied to all downstream commonsense rea-

soning tasks, we propose a novel learning paradigm: commonsense knowledge base commonsense

reasoning (CKBQA). Experiments on CKBQA show that even though inference over common-

sense knowledge is challenging, models can learn to conduct simple inference after training with a

few examples. Besides that, the learned model also demonstrates the generalization ability across

tasks, which was not observed in previous commonsense reasoning models.
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CHAPTER 1

INTRODUCTION

1.1 The Importance and Challenges of Understanding Com-
monsense

1.1.1 Definition of Commonsense and its Importance

Understanding natural language requires both the linguistic knowledge of the vocabulary and gram-

mar of a language and the complex semantic knowledge about the world we live in [60]. In his con-

ceptual semantics theory, Ray Jackendoff, a Rumelhart Prize1 winner, describes semantic meaning

as “a finite set of mental primitives and a finite set of principles of mental combination [57].”

The primitive units of semantic meanings in human language include Thing (or Object), Activity,2

State, Event, Place, Path, Property, Amount, etc. Understanding the semantics related to the world

requires the understanding of these units and their relations.

To help machines understand those semantic units, linguists and domain experts built knowl-

edge graphs (KGs)3 to formalize these units and enumerate categories (or senses) and relations

of them. Considering that the scale of world knowledge could be enormous, these knowledge

graphs have to be large-scale to have decent coverage. Motivated by this, many automatic or

semi-automatic information extraction systems have been developed to extract knowledge from

large-scale web contents and thus construct large-scale knowledge graphs. Several popular exam-

ples are Freebase [10], KnowItAll [37], TextRunner [6], YAGO [157], DBpedia [2], NELL [15],

Probase [172], and Google Knowledge Vault [26]. Even though these automatic and semi-automatic

methods guarantee the scale of the resulting knowledge graphs, they mostly focus on factual knowl-

edge about name entities or terms (e.g., “Paris” is the capital of “France”). In contrast, a lot of

1The David E. Rumelhart Prize is funded for contributions to the theoretical foundations of human cognition.
2In his original book, he called it Action. But given the other definitions and terminologies we adopted [105, 3], it
means Activity.

3Traditionally, people used the term “knowledge base” to describe the database containing human knowledge. In
2012, Google released its knowledge graph where vertices and edges in a knowledge base are emphasized. For more
information about terminologies, please refer to [31].
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Figure 1.1: Example of factual and factoid knowledge. Factual knowledge is fact and is typically
about named entities. As a comparison, factoid knowledge is often just the preference about daily
entities or events. Both Factual knowledge and factoid knowledge are crucial for commonsense
reasoning.

factoid knowledge [43, 42] about daily entities or events (e.g., “hungry things tend to eat”) are

omitted.

Examples of factual knowledge and factoid knowledge are shown in Figure 1.1, from which we

can see that factual knowledge is fact and is typically about named entities, while factoid knowledge

is often just the preference about daily entities or events. Compared with factual knowledge, as a

crucial part of the commonsense, factoid knowledge typically is rarely explicitly stated in the text

because they are too trivial for human beings, yet they bring significant challenges for machines

to conduct commonsense reasoning and to understand human language. For example, when a user

says “I am hungry” to a chatbot at 1:00 pm, the chatbot should understand that the user may want to

have lunch rather than breakfast and recommend some nearby restaurants. This requires the chatbot

to understand the intricate commonsense knowledge about user’s states and potential consequent

activities (i.e., being hungry can motivate the user to eat) and the implications of location and time

(i.e., compared with breakfast, lunch is more likely to appear at 1:00 pm. Thus the chatbot should

recommend some real food rather than just a cup of coffee).

In this thesis, to help machines better conduct commonsense reasoning, we focus on the factoid

commonsense, which is often omitted by previous efforts. Specifically, we formally define the

commonsense we care about in this thesis as follows.
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Definition 1.1.1 Factoid commonsense is preference knowledge about daily entity, state, and event.

Even though factoid commonsense is often a kind of preference rather than inevitably facts, it

plays a critical role in understanding the physical world and human language.

1.1.2 Limitation of Existing Commonsense Reasoning Methodologies

Commonsense reasoning has long been a challenging problem in the artificial intelligence field.

Throughout the years, many efforts have been devoted to helping machines understand common-

sense with different methodologies.

For example, ConceptNet [84] tries to represent commonsense knowledge with triplets over

free-format concepts and leverage crowdsourcing to collect high-quality commonsense triplets.

However, three limitations of this methodology limit its usage on downstream tasks. First, such

an approach can only cover selected commonsense relations such as “What is capable of doing

something” or “What is used for doing something,” while missing more complex commonsense

such as “we often make a call before we leave.” Due to the complexity of commonsense, it is

infeasible to manually define all commonsense relations and then collect knowledge for each of

them. Besides that, as all the included relations are defined by experts, it is hard to employ an

information extraction system to collect such commonsense knowledge automatically. As a result,

we can only leverage human annotation, which could be expensive and lead to the scale problem.

Even though the latest version of ConceptNet (i.e., ConceptNet 5.0 [153]) contains over 600 thou-

sand commonsense triplets, there is still a big gap between the current progress and covering all the

commonsense. Lastly, as aforementioned, commonsense is more likely to be a kind of preference

rather than fixed knowledge. However, the fixed triplets can only represent whether a combination

is correct or not rather than how likely it will be correct given certain circumstances.

Besides representing commonsense with fixed triplets, another line of effort is representing

commonsense with language models. With the help of pre-trained language models, rich contextu-

alized knowledge is encoded into the vector space. Recently, the community has made impressive

performance on several commonsense reasoning benchmarks following this methodology. How-

ever, as we still need to fine-tune these language models with a large-scale of training data so that

they can work and these models are typically not explainable, it is hard for us to tell why these

models can solve the questions (i.e., Whether it is because it already has the commonsense rea-
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Figure 1.2: A pair of questions in WSC.

Figure 1.3: An example from the WinoWhy dataset. Plausible and implausible reasons are indi-
cated with the tick and the crosses, respectively. Different candidate reasons are shown in brackets.
“Human Reverse” means the human reason for the reverse question.

soning ability or captures the spurious associations in the dataset). To answer this question, we

present an in-depth diagnosis of current progress on commonsense reasoning. Specifically, we use

the Winograd Schema Challenge [72] as the base task and ask the models to select the plausible

reason for making the prediction.

Among all developed commonsense reasoning tasks, the Winograd Schema Challenge (WSC) [72],

which is a hard pronoun coreference resolution task, is one of the most influential ones. All ques-

tions in WSC are grouped into pairs such that paired questions have minor differences (mostly

one-word difference) but reversed answers. For each question, we denote the other question in the

same pair as its reverse question. A pair of the WSC task is shown in Figure 1.2. Based on the

design guideline of WSC, all commonly used features (e.g., gender, plurality, and co-occurrence

frequency) do not have any effect. Human beings can solve these questions because of their shared

commonsense knowledge. For example, ordinary people can know that the pronoun “it” in the first

sentence refers to “fish” while the one in the second sentence refers to “worm” because “hungry”

is a common property of something eating things while “tasty” is a common property of something

being eaten.
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Model Property Object Eventuality Spatial Quantity Others Overall
(337) (856) (928) (674) (206) (496) (2865)

Majority Voting 54.30% 56.31% 56.47% 52.67% 52.43% 55.24% 55.67%

BERT (base) 56.97% 56.54% 56.25% 54.01% 51.94% 55.44% 55.92%
BERT (large) 56.38% 57.24% 56.14% 53.41% 51.94% 56.65% 56.13%
RoBERTa (base) 54.30% 56.31% 56.90% 52.67% 52.91% 55.44% 55.78%
RoBERTa (large) 54.30% 56.43% 56.47% 52.67% 52.43% 55.04% 55.67%
GPT-2 (small) 56.68% 54.91% 57.11% 54.45% 59.71% 57.66% 56.37%
GPT-2 (large) 57.57% 54.44% 54.42% 55.93% 54.85% 54.84% 55.77%

BERT (base) + WSCR 55.49% 56.31% 56.90% 52.97% 51.94% 55.04% 55.71%
BERT (large) + WSCR 56.97% 56.31% 56.79% 53.12% 52.91% 55.04% 55.99%
BERT (base) + Grande 57.27% 56.43% 57.22% 53.41% 52.91% 55.24% 55.99%
BERT (large) + Grande 54.90% 56.07% 56.57% 52.67% 52.91% 55.44% 55.71%

RoBERTa (base) + WSCR 52.82% 55.61% 58.41% 53.26% 56.31% 55.04% 56.19%
RoBERTa (large) + WSCR 54.90% 58.06% 56.90% 52.08% 52.91% 56.85% 56.23%
RoBERTa (base) + Grande 56.08% 58.88% 58.19% 55.64% 57.28% 57.66% 58.05%
RoBERTa (large) + Grande 56.08% 58.06% 59.59% 56.82% 56.80% 58.06% 58.18%

Table 1.1: Performances of different models on WinoWhy questions. We report performances of
different reason sets based on the required knowledge types. Reasons could belong to multiple cat-
egories as the original WSC questions could contain more than one knowledge type. The numbers
of questions are shown in brackets.

To figure out whether language model-driven methods can truly understand the commonsense

for solving the WSC questions, we invite annotators to provide reasons for why they choose the

answers when they answer the questions and then create a new task “WinoWhy” with the collected

reasons. For each question in the WSC task, we pair it with several reasons. Models are required

to distinguish the correct reasons from very similar but wrong candidates. From examples in Fig-

ure 1.3, we can see that even though all candidates are highly related to the original question, only

one of them is the correct reason for resolving the coreference relation.

We report the performance of best-performing WSC models on WinoWhy in Table 1.1.4 Rea-

sons are categorized into different types by humans for a better understanding. From the results, we

can observe that even though pre-trained language representation models can achieve about 90%

accuracy on the original WSC task, they still cannot understand the correct commonsense reason-

ing for making the decisions. Moreover, experimental results on different knowledge types prove

that such a conclusion is universal rather than for a specific kind of knowledge. A possible reason

4More details about the dataset construction and experiments can be found at [186].
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Methodology Major limitations

Triplets (1) Limited coverage of knowledge types; (2) Limited scale; (3) Cannot
effectively represent preference

Language Models (1) Not explainable; (2) Can only cover the commonsense in text.

Table 1.2: Major limitations of existing commonsense reasoning methodologies

is that even though the designers of WSC are trying to avoid any statistical correlation between the

answer and the trigger word, such statistical correlation still exists. As a result, pre-trained lan-

guage representation models can learn such correlation from large-scale training corpus and thus

can answer WSC questions without fully understanding the reasons behind them. Besides that,

we can also find that fine-tuning over a similar dataset (e.g., WSCR [126] and WinoGrande [136])

can slightly help RoBERTa, but the effect is still quite limited. This is probably because such a

fine-tuning procedure only teaches pre-trained models to better answer WSC questions rather than

understand the commonsense knowledge behind them.

Besides the explainability issue, the coverage of language models is another critical limitation.

As discussed in [84], commonsense is often rarely explicitly expressed in human language because

it is too trivial. And thus, it is infeasible to acquire all the commonsense from text like what

language models have been doing.

Table 1.2 summarizes the major limitations of existing commonsense reasoning methodologies,

which motivates us to think about how to develop a more reliable commonsense reasoning system.

A reasonable way to do so is to achieve a balance between these two options. Unlike language

models, we still need to represent commonsense in an explicit way such that we can preserve the

explainability. Moreover, we can use such explicit knowledge to act as the bridge between different

modalities such that we can go beyond text and collect richer knowledge from other modalities

such as visual signals. At the same time, we also need to choose a new representation format rather

than triplets such that it is more flexible for representing richer commonsense relations and can

effectively preserve the preference property of commonsense. The methodology we propose in this

thesis is representing commonsense with the higher-order selectional preference over eventualities,

and we introduce more details in Section 1.2.
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Figure 1.4: Eventuality Definitions inherited from [3].

1.2 Towards Robust Commonsense Reasoning with Higher-order
Selectional Preference

As discussed in [84], commonsense knowledge refers to “millions of basic facts and understanding

possessed by most people.” Unlike factual knowledge like “London is the capital of UK,” which

is always true, commonsense knowledge is often not inevitably true and only reflects a kind of

contextual preference. For example, in most cases, rocks are not used for eating, but some birds

do eat rocks to help to digest. Such kind of knowledge is also called factoids [43, 42]. To effec-

tively represent such preference-like commonsense knowledge, selectional preference [130] was

proposed, which is traditionally defined on top of single dependency connections (e.g., nsubj, dobj,

and amod). Given a word and a dependency relation, humans have preferences for which words are

likely to be connected. For instance, when seeing the verb “sing,” it is highly plausible that its object

is “a song.” When seeing the noun “air,” it is highly plausible that its modifier is “fresh.” However,

such one-hop selectional preference is not enough to cover all the commonsense knowledge. Take

Figure 1.3 as an example. To resolve the target pronoun “it” to “fish” rather than “worm,” we need

to know that the subject of the verb “eat” is more likely to be “hungry.”

To effectively represent such commonsense, in [182], we propose to extend the concept of

selectional preference to second-order such as “Hungry-amod-[Subject]-nsubj-eat.” Experiments

show that such second-order selectional preference is essential for solving WSC questions.

But still, as the inference unit in both the first-order and second-order selectional preference are

words, they can only represent commonsense inside an eventuality (e.g., which eventuality is more
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likely to happen) and cannot express commonsense between eventualities. By “eventuality,” we

follow the definition from [3] and show it in Figure 1.4, from which we can see that “eventuality”

is used as a general term for verb phrases. Examples of different classes are as follows:

1. dynamic: Sit, Stand, Lie + Location.

2. static: be drunk, be in New York.

3. processes: walk, push a cart.

4. protracted: build x, walk to Boston.

5. happenings: recognize, notice, flash once

6. culminations: die, reach the top

An example of the commonsense involving multiple eventualities is discussed by [168] and

similar examples are frequently observed the Winogrande Schema Challenge [72]:

• The soldiers fired at the women, and we saw several of them fall.

To resolve the pronoun “them” in the above example, Wilks argued that machines need to access

the commonsense knowledge or partial information (in MaCarthy’s phrase) “hurt things tending

to fall down,” which can be translated into the following form: (hurt, X) ResultIn−−−−−→ (X, fall), which

is essentially the higher-order selectional preference that involves multiple events or states. For the

clear representation, in the rest of this thesis, we refer to lower-order and higher-order selectional

preference with the following definitions.

Definition 1.2.1 Lower-order Selectional Preference (SP): Preference about how likely an even-

tuality is going to happen.

Definition 1.2.2 Higher-order Selectional Preference (SP): Preference about how likely a rela-

tion exists between two eventualities.

In this thesis, to address the limitations of existing commonsense reasoning methodologies, we

propose to represent commonsense with a weighted eventuality-centric knowledge graph, where
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I am tired

I sleep I need a rest

I go

I am hungry

I do not have lunch I eat pizza

I make an appointment

I arrive on time

I

eat

pizza

nsubj dobj

Synchronous
(1.0)

Conjunction
(8.0)

Conjunction
(73.4)Contrast

(3.7)

Conjunction
(0.5)

Co-Occurence
(4.0)

Succession
(0.5)

Reason
(2.0)

(Frequency: 57)

(Frequency: 0)I eat plate

(Frequency: 0)I eat fork

Figure 1.5: ASER Demonstration. Eventualities are connected with weighted directed edges. Each
eventuality is a dependency graph.

the weight inside or across different eventualities can effectively represent humans’ lower-order

or higher-order selectional preference over eventualities. Even though different eventuality sub-

classes are slightly different, as our goal is modeling humans’ preference about the world rather

than classifying the type of preference, we treat all eventualities as the same and do not carefully

classify them in this thesis. We denote such a knowledge graph as Activity, State, Event, and their

Relations (ASER) and demonstrate it in Figure 1.5. As shown in the example, the relations between

eventualities are discourse relations (e.g., “Result”) in discourse analysis, and both nodes and edges

are associated with frequency-based weights to reflect higher-order selectional preferences given

a specific linguistic (either dependency and discourse) pattern. As discussed by [130, 182], such

frequency distribution can serve as a good fit of humans’ selectional preference, which is indeed the

commonsense knowledge. By observing that “I eat plate” and “I eat fork” never appear in ASER

while “I eat pizza” appears 57 times. We can infer that “plate” and “fork” are not subjects that

can be eaten while “pizza” is. Similarly, the frequencies of edges can be used to reflect the higher-

order selectional preference between eventualities. For example, by observing that (“PERSON be

hungry”-Result-“PERSON eat”) appear at least 12 times while (“PERSON be hungry”-Reason-

“PERSON eat”) appears only once, we can know that “PERSON be hungry” is more likely to

result in rather than be caused by “PERSON eat.” We argue that the higher-order selectional

preference in ASER can be scalable and effective to represent previously defined commonsense

knowledge types in ConceptNet [84] and potentially many other types of commonsense knowledge.

To build such a large-scale eventuality knowledge graph, we first leverage existing tools (e.g.,

dependency/discourse parsing) and information extraction algorithms to extract eventualities as
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well as their relations from raw documents. For the eventuality extraction, considering that the

English language’s syntax is relatively fixed and consistent across domains and topics, instead of

defining complex triggers and role structures of events, we use carefully designed syntactic patterns

to extract all possible eventualities. We do not distinguish between semantic senses or categories of

particular triggers or arguments in eventualities but treat all extracted words with their dependency

relations as hyperedge in a graph to define an eventuality as a primitive semantic unit in our knowl-

edge graph. For eventuality relations extraction, we adopt an end-to-end discourse parser [166] to

automatically determine the discourse relations between eventuality spans and then create edges

based on the predicted relation. Compared with previous commonsense knowledge acquisition

methods, acquiring selectional preference knowledge with linguistic patterns and discourse rela-

tion prediction models is much cheaper and scalable and thus can be used to extract large-scale

selectional preference knowledge from the unlabeled corpus. After that, to overcome the challenge

that a large portion of the commonsense knowledge is rarely expressed in textual corpus and moti-

vated by the observation [177] that human beings often conceptualize the events to a more abstract

level such that they can be applied to new events, we propose to leverage existing conceptualiza-

tion techniques [151, 152] to automatically generalize the knowledge we observed and extracted

to those unseen eventualities.

In total, ASER contains 438,648,952 unique eventualities and 648,514,465 edges. Table 1.3

provides a size comparison between ASER5 and existing eventuality-related (or simply verb-centric)

knowledge bases. Essentially, they are not large enough as modern knowledge graphs and inade-

quate for capturing the richness and complexity of eventualities and their relations. FrameNet [5]

is considered the earliest knowledge base defining events and their relations. It provides annota-

tions about relations among about 1,000 human-defined eventuality frames, which contain 27,691

eventualities. However, given the fine-grained definition of frames, the scale of the annotations is

limited. ACE [102] (and its follow-up evaluation TAC-KBP [1]) reduces the number of event types

and annotates more examples in each of the event types. PropBank [107] and NomBank [92] build

frames over syntactic parse trees, and focus on annotating popular verbs and nouns. TimeBank

focuses only on temporal relations between verbs [119]. While the aforementioned knowledge

bases are annotated by domain experts, ConceptNet6 [84], Event2Mind [146], ProPora [21], and

5ASER (core) includes all eventualities that appear more than once, ASER (full) includes all extracted eventualities,
and ASER (concept) includes all eventualities generated with the conceptualization

6Following the original definition, we only select the four relations (“HasPrerequisite”, “HasFirstSubevent”, “Has-
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Table 1.3: Size comparison of ASER and existing eventuality-related resources. # Eventuality, #
Relation, and # R types are the number of eventualities, relations between these eventualities, and
relation types. For KGs containing knowledge about both entity and eventualities, we report the
statistics about the eventualities subset. ASER (core) filters out eventualities that appear only once
and thus has better accuracy while ASER (full) can cover more knowledge.

# Eventuality # Relation # R Types

FrameNet 27,691 1,709 7
ACE 3,290 0 0
PropBank 112,917 0 0
NomBank 114,576 0 0
TimeBank 7,571 8,242 1
ConceptNet 74,989 116,097 4
Event2Mind 24,716 57,097 3
ProPora 2,406 16,269 1
ATOMIC 309,515 877,108 9
ATOMIC-2020 638,128 1,331,113 23
GLUECOSE 286,753 304,099 10
Knowlywood 964,758 2,644,415 4

ASER (core) 52,940,258 52,296,498 14
ASER (full) 438,648,952 648,514,465 14
ASER (concept) 15,640,017 224,213,142 14

ATOMIC [139], ATOMIC-2020 [55], and GLUECOSE [98] leveraged crowdsourcing platforms

or the general public to annotate commonsense knowledge about eventualities, in particular the

relations among them. Furthermore, KnowlyWood [160] uses semantic parsing to extract activities

(verb+object) from movie/TV scenes and novels to build four types of relations (parent, previous,

next, similarity) between activities using inference rules. Compared with all these eventuality-

related KGs, ASER is larger by one or more orders of magnitude in terms of the numbers of

eventualities and relations it contains.

To demonstrate that the selectional preference knowledge in ASER, which is essentially the fre-

quency information over linguistic relations, is indeed the commonsense we are interested in, we

conduct experiments to prove the transferability from ASER to other human-defined commonsense

knowledge graphs such as ConceptNet [84], which is also known as Open Mind CommonSense

(OMCS). With a Pattern extraction-based approach, we can effectively convert ASER into Tran-

sOMCS, which is in the format of OMCS but two orders of magnitude larger. Compared with

the data-driven method COMET [11] and the probing-based method LAMA [115], TransOMCS

demonstrates the superiority in terms of quantity, quality, and novelty. Such success demonstrates

SubEvent”, and “HasLastSubEvent”) that involve eventualities.
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the transferability from linguistic-based SP knowledge to commonsense knowledge and helps show

that the higher-order selectional preference over eventualities is a sound commonsense representa-

tion methodology.

As aforementioned, an advantage of representing commonsense knowledge in such a structured

way is that it can serve as the bridge to connect different modalities. Thus, besides proposing

how should we represent the commonsense, we also explored different commonsense knowledge

acquisition methods such as encoding SP knowledge with the multiplex word embeddings and

then predicting unseen SP knowledge, how to leverage the analogy between eventualities and the

eventuality conceptualization to transfer the knowledge from observed eventualities to unseen ones,

and how to effectively acquire eventuality-centric commonsense from the visual signal.

After acquiring the knowledge, the next question to answer is how to help machines better

conduct commonsense reasoning and understand human language with the knowledge. To answer

this question, we first try one of the most traditional methods that converting the structured knowl-

edge into features and then training a supervised model with the features. Experiments on pronoun

coreference resolution demonstrate the effectiveness of such an approach. Later on, to address the

issue that only a limited kind of knowledge can be easily converted into features, we propose an

end-to-end network to directly utilize selectional preference knowledge into the model and achieve

even better performance on the pronoun coreference resolution task. At the end of this thesis,

we also try to move one step further to explore a general commonsense inference solution for all

downstream tasks. Specifically, we assume that even though there could exist enormous kinds of

commonsense reasoning tasks, the underline commonsense inference rules are limited. To testify

this, we propose to convert different commonsense reasoning tasks into a unified question answer-

ing format and build a model that can learn the underline inference rules. As the ASER knowledge

is provided for answering the questions, we denote this new commonsense reasoning formulation

as commonsense knowledge base question answering (CKBQA). Experiments on CKBQA show

that even though inference over commonsense knowledge is challenging, models can learn to con-

duct simple inference after training with a few examples. Another observation is that the learned

model demonstrates the generalization ability across tasks, which was not observed in previous

commonsense reasoning models.
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Figure 1.6: Thesis Organization.

1.3 Thesis Organisation

As shown in Figure 1.6, this thesis is organized as follows. In Chapter 2, we introduce related

works about commonsense reasoning. After that, in Part 1, we discuss the proposed commonsense

representation methodology, which includes the higher-order selectional preference (Chapter 3),

the construction of a large scale SP-based commonsense knowledge graph ASER (Chapter 4), and

the transferability from SP knowledge in ASER to other human-defined commonsense relations

(Chapter 5). Knowledge acquisition works are introduced in Part 2. Specifically, In Chapter 6, we

introduce how to acquire selectional preference knowledge with a multiplex embedding approach.

In Chapter 7, we introduce how to generalize our knowledge about familiar eventualities to unfamil-

iar ones with the help of analogy and conceptualization. In Chapter 8, we introduce the exploration

we tried about acquiring higher-order selectional preference knowledge from vision signals. As

the last piece of this thesis, we discuss how to apply the SP knowledge for downstream tasks in

Part 3. We first use pronoun coreference resolution as the downstream task and propose two appli-

cation methods: using SP knowledge as the feature, an end-to-end system that can automatically

select and conduct inference over the SP knowledge, which are in Chapter 9 and 10, respectively.

In Chapter 11, we introduce the proposed general commonsense inference framework. In the end,

Chapter 12 includes the conclusion and discussion about remaining challenges about commonsense

reasoning that we need to overcome in the future.
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CHAPTER 2

RELATED WORKS

Commonsense knowledge typically refers to the knowledge shared by most people. As discussed

by [45], such knowledge is often omitted in human language for communication efficiency, which

brings a huge challenge for automatic natural language understanding systems. To overcome such

a challenge and better understand human language, many efforts have been devoted during the

past few decades in both the artificial intelligence and natural language processing communities.

In this chapter, we introduce related works about commonsense reasoning from four perspectives:

(1) Commonsense Representation and Resources; (2) Commonsense Knowledge Acquisition; (3)

Commonsense Reasoning Evaluation; (4) Commonsense Reasoning Models.

2.1 Commonsense Representation and Resources

As an important knowledge resource for many artificial intelligence systems, commonsense knowl-

edge covers various knowledge categories like causality [139], reasoning [141], property [84], and

quantity [33], and has been proven crucial in many downstream tasks like question answering [79],

dialogue system [189], reading comprehension [167], and pronoun coreference resolution [72].

To help machines understand the complex commonsense, one of the first steps is to represent

the commonsense knowledge in a machine-readable format, acquire the knowledge, and construct a

corresponding knowledge base. The design, construction, and curation of commonsense resources

have long been a major pursuit of the AI community since its early days [90]. During the past few

decades, the AI community has constructed several high-quality commonsense relevant knowledge

resources, including but not limited to:

• Cyc [71]: As one of the earliest efforts in representing commonsense, Cyc is a long-term

artificial intelligence project that aims to assemble a comprehensive ontology and knowledge

base that can represent how this world works. By the time of 2017, the ontology of Cyc has

grown to over 1.5 million terms.
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• ConceptNet [84]: ConceptNet is one of the most known commonsense knowledge base in

the world. It was initiated from Open Mind CommonSense Project, where careful crowd-

sourcing was conducted to create a higher quality commonsense knowledge base that con-

tains over 600 thousand triplets about 34 commonsense relations. Later on, after merging

with other resources such as dictionaries, ConceptNet has grown to be ConceptNet 5.5 [154],

which contains over 21 million edges about 8 million nodes. Even so, the core part of Con-

ceptNet, which is about commonsense, is still not much bigger than the original one.

• ATOMIC [139]: Different from Concept, which has a broad coverage of commonsense

relations, ATOMIC focuses on a niche scenario, the effect and causal relations between daily

events. Specifically, it leverages crowd-sourcing to collect over 300 thousand triples about

daily events that cover nine commonsense relations.

• WordNet [94]: As one of the most influential resources in the natural language processing

community, WordNet provides the basic ontology for words and concepts. All concepts (i.e.,

synsets) are organized in a hierarchical structure. Even though such knowledge is not directly

the “commonsense” we want, our experiments in Chapter 7 demonstrate that such knowledge

can help us generalize the acquired commonsense knowledge about events.

• FrameNet [1]: Another important commonsense resource is the FrameNet. Instead of mod-

eling the world with words, FrameNet proposes to model the world with the concept of frame.

By merging similar events together, FrameNet collects a set of frames and their relations,

which serve as one of the first event ontologies.

• Webchild [161]: a large collection of commonsense knowledge. Different from other re-

sources, Webchild is automatically extracted and disambiguated from the web content. It

contains triplets that connecting nouns and their properties such as “hasShape,” “hasTaste,”

and “evokesEmotion.” The most recent version of webchild contains about 7.5 million edges.

• Visual Genome [67]: Different from the aforementioned knowledge resources that only

represent the commonsense knowledge with text, Visual Genome takes the images into con-

sideration. It contains 108,077 images and over 2.3 million relations, which include many

commonsense relations, in the images.

A common property of these knowledge resources is that they all require a pre-defined com-
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monsense relation set and then leverage either crowd-sourcing or information extraction techniques

to acquire the knowledge. However, it is often hard for a pre-defined commonsense relation set to

cover all the commonsense in the world.

To address this issue, people start to think about how we can get rid of the pre-defined rela-

tions, and encoding all the knowledge with pre-trained language models becomes a popular option.

Recently, with the fast development of pre-trained language models (e.g., GPT-2 [121] and GPT-

3 [12]) and masked language models (e.g., BERT [25], RoBERTa [85], and Albert [68]), people

start to realize that rich knowledge are encoded by the language models, and the commonsense

knowledge is not an exception [116]. It has been well known that both the language models and

masked language models are trained with unlabeled corpora, and the foundation of their capability

of understanding language is the co-occurrence of words. As introduced in Chapter 1, the co-

occurrence information or frequency can also reflect rich commonsense (e.g., it is more likely for

“bird” rather than “fish” to appear before the verb “fly”). This observation explains why language

models can encode rich commonsense knowledge. At the same time, it also reminds us of a severe

limitation of the language models that their understanding is based on tokens rather than eventual-

ities. As a result, they can effectively encode lower-order selectional preference, whose inference

unit is words, while struggle at encoding the higher-order selectional preference whose inference

unit are eventualities [176].

In this thesis, we propose to view the commonsense knowledge as selectional preference and

use an eventuality-centric knowledge graph to represent the commonsense. Different from previous

triplet formats, we design the knowledge graph to be weighted, not just for edges but also for

nodes. As a result, we can use the weights of edge and nodes to reflect higher-order and lower-

order selectional preference, respectively. Compared with the language models, representing the

commonsense with such a structured format has the following advantages: (1) More explainable:

we can be more clear about what is going on and how can we improve; (2) Better Coverage: we

do not only have the lower-order preference knowledge but also have the higher one; (3) Multi-

Modal: we can use such a format to connect different modalities such that we have the potential to

go beyond text and acquire commonsense knowledge from different modalities such as the visual

signal.
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2.2 Commonsense Knowledge Acquisition

After introducing previous works on commonsense representation, how to efficiently and accu-

rately acquire the commonsense is also crucial for developing a commonsense reasoning system.

The most popular approach is crowd-sourcing, which has been adopted by many aforementioned

knowledge bases such as ConceptNet [84] and ATOMIC [139]. An important advantage of crowd-

sourcing is that the acquired knowledge is often of high quality because they are curated by humans,

but at the same time, its expensive cost also limits its coverage.

Recently, to address the scale problem of crowd-sourcing, several attempts [75, 23] have been

made to enrich the existing commonsense knowledge from a machine learning angle. Specifically,

they train a relation prediction model with the acquired knowledge and then apply the model to

predict new relations between concepts. However, these approaches cannot generate new nodes

(concepts). To address this problem, several models were proposed to directly generate common-

sense tuples in either supervised [11] or unsupervised [115] fashions.

Besides acquiring structured knowledge, another important acquisition method is language

modeling. Compared with crowd-sourcing, language modeling is more scalable. But at the same

time, its training loss determines that it is not easy to acquire complex commonsense such as the

higher-order selectional preference over multiple eventualities. Besides that, another limitation of

the language models is that they can only acquire commonsense knowledge from text and cannot

effectively handle other modalities such as visual signals. As an important property of common-

sense is that commonsense is rarely expressed explicitly in human language, the text might not be

enough to cover all the commonsense.

Other than those approaches that try to acquire all kinds of commonsense at the same time,

there are also many attempts that focus on a specific kind of commonsense. The Causal relation

is one of the most popular ones. As a crucial knowledge for many artificial intelligence (AI) sys-

tems [111], causality has long been an important research topic in many communities with different

focuses. For example, in the traditional AI community, researchers [41, 46, 7, 111, 143, 110, 29]

are focusing on modeling causality from structured and formally defined data (e.g., directed acyclic

graph). Different from them, researchers from the commonsense community are focusing on iden-

tifying key objects or events in images that can cause certain decision makings [39, 32], acquiring

causal knowledge via either crowd-sourcing [84, 138], or linguistic pattern mining [51] and then
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applying the acquired knowledge for downstream tasks [101]. One thing worth mentioning is that

there is a clear difference between formal causality studies and recent studies in the commonsense

community. Compared with traditional causality studies, the causality in commonsense is typical

“causal” and “contributory.” However, they still play a critical role for many downstream (e.g., CV

and NLP) tasks.

Besides the causal knowledge, another important type of commonsense is the temporal com-

monsense (e.g., which event is more likely to happen and the typical duration and frequency of

events) [101]. One of the most influential works in this direction is [188], through a patter mining

plus language model fine-tuning pipeline, it effectively encodes temporal knowledge such as the

typical duration and frequency knowledge into the language models. As a result, it can predict that

moving to a different city will take more time than moving a chair.

In Part 2, following the methodology of representing commonsense with selectional prefer-

ence, we introduce three commonsense acquisition approaches that try to acquire commonsense

knowledge from text, other knowledge graphs, and visual signal, respectively.

2.3 Commonsense Reasoning Tasks

Besides the commonsense representation and acquisition, an accurate and efficient evaluation sys-

tem is also crucial for us to develop a reliable commonsense reasoning system. Recently, the

community has developed many commonsense reasoning datasets to test models’ commonsense

reasoning abilities. Several popular ones are as follows:

• Hard Pronoun Coreference Resolution: The hard pronoun coreference resolution (Hard-

PCR) task is one of the most famous commonsense reasoning tasks. For each question, a

target pronoun and two candidate mentions are provided, and the task is to select the correct

mention that the pronoun refers to. Careful expert annotations were conducted to get rid

of the influence of all simple linguistic rules and ask the models to solve the problem with

commonsense reasoning. In CKBQA, we include instances from WSC [72], DPR [126], and

WinoGrande [136].

• CommonnsenseQA: CommonsenseQA [159] is a commonsense question answering dataset.

For each question-answer pair, four relevant but wrong concepts are used as the other candi-
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dates, and the models are required to select the correct one out of five candidates. In CKBQA,

we randomly sample a negative answer to make it a binary choice task, which is consistent

with other datasets.

• COPA: COPA [133] focuses on evaluating whether models can understand the causality

between events or not. For each head event, two candidate tail events are provided, and

models are asked to predict the one caused by or the reason for the head event.

• Timebank: Timebank [119] is a dataset that focuses on evaluating whether models can cor-

rectly predict the temporal relations between events or not.

• NumerSense: Recently, language models have demonstrated a strong commonsense reason-

ing ability. To evaluate whether current models can understand the numerical common sense

(e.g., how many legs does a bird has) or not, NumerSense [80] was proposed. It formulates

the problem as a probing task.

Even though these datasets may have different formats (e.g., Winogrande [136] for slot fit-

ting, and CommonsenseQA [159] for question answering), knowledge types (e.g., COPA [133]

for causal commonsense, and NumerSense [80] for numerical commonsense), or modalities (e.g,

VCR [179] for visual commonsense and many others for textual commonsense), they all follow a

standard supervised learning setting, and aim at helping machines to solve a specific commonsense

task in an end-to-end manner. Given this setting, it is often difficult to tell what has been learned

during the training process. Was it used to acquire commonsense knowledge, learn to conduct com-

monsense inference, or both? Such ambiguity limits our progress in solving these commonsense

reasoning tasks. To separate the effect of commonsense knowledge and inference, in Chapter 11,

we convert multiple commonsense reasoning tasks into a unified format and equip each question

with the essential knowledge such that the models do not need to worry about the knowledge and

can focus on the inference. Moreover, as we converted different tasks into a unified format, we

can easily evaluate the cross-task performance of these commonsense inference models, which can

potentially motivate a general commonsense inference model in the future.
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2.4 Commonsense Reasoning Models

In the last section of this chapter, we introduce previous commonsense reasoning models. In the

past few decades, commonsense reason has long been one of the most challenging commonsense

understanding tasks. Take the popular Winograd Schema Challenge [72] as an example. Even

though researchers have tried to tackle this problem from a different angle, such as leveraging

either search engines [35], linguistic knowledge [182, 185], or language representation models [65],

experimental results showed that these models still cannot fully solve the problem, but we are not

clear about how to further improve them.

A recent breakthrough made by the community is [65]. By fine-tuning a pre-trained language

model with large-scale and high-quality training data (winogrande [136]), it achieves over 90%

accuracy. However, as analyzed by [186, 34], the improvement is still largely due to observing

similar questions rather than truly understanding the commonsense.

Besides fine-tuning language models, jointly using the structured knowledge and language

models is another trend of commonsense reasoning models. Several representative works are as

follows:

• Kagnet: As one of the pioneering works that utilized structured knowledge for solving com-

monsense reasoning tasks, Kagnet [78] first used a graph convolution network to encode the

knowledge graph and then applied an LSTM based hierarchical attention mechanism to en-

code the knowledge path that starts with the concepts in the question and end with concepts

in the answer. On the other hand, KagNet encodes the question and answers with pre-trained

language models. In the end, it concatenates all representations together for the final predic-

tion.

• Graph based reasoning (GBR): Instead of only encoding paths starting with the question

concepts and end with answer concepts, the follow-up work GBR [89] proposed to conduct

a depth-first algorithm over the knowledge graph to generate a sequence of paths as the

supporting knowledge paths.

• Multi-Head Knowledge Attention (MHKA): To further exploit the provided knowledge,

MHKA [109] employed a transformer network to model the paths from the question concepts
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and answer concepts, then concatenated the knowledge and context representation for the

final prediction.

Even though these models have achieved certain improvements, there is still a notable gap

between their current performance and fully understanding the commonsense. How to conduct

commonsense reasoning is still an unsolved problem that worth exploring in the future.
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PART 1

COMMONSENSE KNOWLEDGE
REPRESENTATION

In this part, we discuss how we should represent commonsense knowledge. In Chapter 3, we

start with the background of the lower bound of the semantic theory and the traditional one-hop

selectional preference and then discuss why we should extend it to higher-order ones such as two-

hop selectional preference. To study the connection between those one-hop and two-hop selec-

tional preference and human-defined commonsense knowledge, we create a large-scale selectional

preference resource SP-10K. From the experiments, we find out that there is a decent correlation

between SP-10K and Open Mind CommonSense (OMCS), which is a human-crafted common-

sense knowledge graph. In Chapter 4, we further extend the concept of selectional preference to

be higher-order and construct a large-scale commonsense knowledge graph ASER following this

principle. Construction details and careful analysis are presented. To demonstrate the collected

selectional preference knowledge is indeed commonsense, in Section 5, we try to convert ASER

into the format of OMCS [84]. Experiments show that with a simple pattern mining approach,

we can effectively convert ASER into TransOMCS, which is in the same format as OMCS but

two-magnitude larger.
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CHAPTER 3

SELECTIONAL PREFERENCE AND
COMMONSENSE

3.1 From The Lower Bound of a Semantic Theory to Selec-
tional Preference

As discussed by the lower bound of a semantic theory [60], understanding human language requires

both knowledge about the language (i.e., grammar) and knowledge about the world. As a result, if

we fix the grammar structure of the linguistic descriptions, their difference will be the semantics.

An example is shown in Figure 3.1. There are three sentences that share the same grammar structure

but describe different events, which may have totally different reasons, effects, or sub-events. Give

that the previous context is “It is dangerous,” humans normally will prefer the second sentence to

appear in this context because the lion is a dangerous animal. And such preference can reflect the

commonsense knowledge we are after. This example shows that when the grammar is controlled,

the selection we made can effectively represent the commonsense knowledge we care about.

Figure 3.1: Principle Demonstration. When we fix the grammar, humans’ preference over the
linguistic description are reflecting the commonsense.

Historically, such grammar-based semantics is called selectional preference [131], which is

a relaxation of selectional restrictions [60]. SP has been shown to be useful over a variety of
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tasks including sense disambiguation [130], semantic role classification [178], coreference cluster-

ing [53, 56, 50], and machine translation [162]. Originally, the research on selectional preference

focuses on the IsA hierarchy in WordNet [38] and verb-object dependency relations. Later on, the

idea of selectional preference was extended to verb-subject dependency relations. Several first-

order selectional preference examples are as follows.

• SP(Cat, IsA, Animal) > SP(Cat, IsA, Plant)

• SP(Eat, dobj, Food) > SP(Eat, dobj, Rock)

• SP(Sing, nsubj, Singer) > SP(Sing, nsubj, House)

Aside from these relations, we believe that higher-order dependency relations may also reflect

meaningful commonsense knowledge. Consider the following two examples of hard pronoun res-

olution problems from the Winograd Schema Challenge [72]:

• (A) The fish ate the worm. It was hungry.

• (B) The fish ate the worm. It was tasty.

In (A), we can resolve “it” to “the fish” because it is more plausible that the subject of the verb

“eat” is hungry. On the other hand, for (B), we can resolve “it” to “the worm” because it is more

likely that the object of the verb “eat” is tasty. We can formalize the commonsense that the subject

of eat is more likely to be “hungry” rather than “tasty” with the following second-order selectional

preference:

• SP(Eat, Nsubj-amod, Hungry) > SP(Eat, Nsubj-amod, Tasty)

To have a better understanding of the connection between selectional preference and the com-

monsense knowledge defined by humans, we first collect a high-quality selectional preference

dataset SP-10K. To construction details are shown in Section 3.2. After collecting the SP-10K,

we carefully analyze the relation between SP-10K and Open Mind CommonSense (OMCS) [145]

in Section 3.3. At the end of this chapter, in Section 3.4, we conduct experiments to see whether the

high-quality selectional preference knowledge in SP-10K can help us better solve the commonsense

reasoning task Winograd Schema Challenge [72] or not.
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SP Evaluation Set #R #W #P

(McRae et al., 1998) [91] 2 641 821
(Keller and Lapata, 2003) [62] 3 571 540
(Pado et al., 2006) [106] 3 180 207

SP-10K 5 2.5K 10K

Table 3.1: Statistics of Human-labeled SP Evaluation Sets. #R, #W, and #P indicate the number of
SP relation types, words, and pairs, respectively.

3.2 SP-10K

3.2.1 Design of SP-10K

As discussed in [52], a high-quality evaluation resource should be: (1) clearly defined; (2) repre-

sentative; and (3) consistent and reliable.

First, similar to existing human-labeled SP evaluation sets [91, 62, 106], SP-10K uses the plau-

sibility of selectional pairs as the annotation. Hence, SP-10K is clearly defined. Second, compared

to these existing evaluation sets, as shown in Table 3.1, SP-10K covers a larger number of rela-

tions and SP pairs, making it a more representative evaluation set. Finally, as shown by the high

inner-annotation agreement in Section 3.2.2, the annotation of SP-10K is consistent and reliable.

Selectional Relations

Traditionally, the study of SP has focused on three selectional relations: verb-subject, verb-object,

and noun-adjective. As demonstrated in Section 3.1, some verbs have a preference for the properties

of their subjects and objects. For example, it is plausible to say that the subject of “eat” is hungry

and the object of “eat” is tasty, but not the other way round. To capture such preferences, we

propose two novel two-hop dependency relations, “dobj_amod” and “nsubj_amod.” Examples of

these relations are presented in Table 3.2. In total, SP-10K contains five SP relations.

Following previous approaches [91, 106], for the “dobj” and “nsubj” relations, we take a verb

as the head and a noun as the dependent. Similarly, for “dobj_amod” and “nsubj_amod” relations,

we take a verb as the head and an adjective as the dependent. Moreover, for the “amod” relation,

we take a noun as the head and an adjective as the dependent.
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Relation Frequent Random

“dobj”
(ask, question) (ask, voting)

(ask, time) (ask, stability)

“nsubj”
(people, eat) (textbook, eat)

(husband, eat) (stream, eat)

“amod”
(fresh, air) (rational, air)
(cold, air) (original, air)

“dobj_amod”
(design, new) (design, official)

(design, original) (design, civil)

“nsubj_amod”
(friendly, smile) (young, smile)

(symbolic, smile) (civilian, smile)

Table 3.2: Examples of candidate pairs for annotation. For the ease of understanding, the order of
head and dependent may be different for various relations.

Candidate SP Pairs

The selected vocabulary consists of 2,500 verbs, nouns, and adjectives from the 5,000 most frequent

words1 in the Corpus of Contemporary American English.

For each SP relation, we provide two types of SP pairs for our annotators to label: frequent pairs

and random pairs. For each selectional relation, we first select the 500 most frequent heads. We then

match each head with its two most frequently-paired dependents, as well as two randomly selected

dependents from our vocabulary. As such, we retrieve 2,000 pairs for each relation. Altogether, we

retrieve 10,000 pairs for five selectional relations. These pairs are composed of 500 verbs, 1,343

nouns, and 657 adjectives. Examples of sampled pairs are presented in Table 3.2.

3.2.2 Annotation of SP-10K

Survey Design

Following the SimLex-999 annotation guidelines [52], we invite at least 11 annotators to score each

SP pair. We divide our 10,000 pairs into 100 surveys. Each survey contains 103 questions, three of

which are checkpoint questions selected from the examples to control the labeling quality. Within

a survey, all the questions are derived from the same selectional relation to improve the efficiency

of survey completion.

1https://www.wordfrequency.info/free.asp.
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Figure 3.2: Average annotation time per 100 questions. “m” indicates minutes and “s” indicates
seconds.

Each survey is consist of three parts. We begin by explaining the task to the annotators, includ-

ing how to deal with the special case like multi-word expressions. Then, we present three examples

to help the annotators better understand the task. Finally, we ask questions using the following

templates (VERB, ADJ, and NOUN are place holders and will be replaced with the corresponding

heads and dependents in the actual surveys.):

• dobj: How suitable do you think it is if we use NOUN as the object of the verb VERB?

• nsubj: How suitable do you think it is if we use NOUN as the subject of the verb VERB?

• amod: How suitable do you think it is if we use ADJ to describe the noun NOUN?

• dobj_amod: How suitable do you think it is if we use ADJ to describe the object of the verb

VERB?

• nsubj_amod: How suitable do you think it is if we use ADJ to describe the subject of the verb

VERB?

For each question, the annotator is asked to select one of the following options: Perfectly match

(5), Make sense (4), Normal (3), Seems weird (2), It’s not applicable at all (1). We randomize

the order of frequent and random pairs to prevent annotators from simply memorizing the question

order.
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Participants and Annotation

We employ the Amazon Mechanical Turk platform (MTurk) for our annotations,2 and require that

our annotators are “Master Workers,” indicating reliable annotation records.3 We also require our

annotators to be either native English speakers or currently live and/or work in English-speaking

locales. Based on these criteria, we identified 125 valid annotators. These annotators produced

130,575 ratings for a total cost of USD1,182.80. We support the multiple participation of annotators

by ensuring that subsequent surveys are generated with their previously-unanswered questions.

From our annotation statistics, we notice that different selectional relations take different time

to annotate. As shown in Figure 3.2, the annotators spent the least time on the “amod” relation,

suggesting that the modifying relation is relatively easy to understand and judge. Another inter-

esting finding is that the annotators spend more time on relations involving subjects than those

involving objects, which is consistent with the observation proposed by [57] that verbs have clearer

preferences for objects than subjects.

Post-processing

We excluded ratings from annotators who (1) provided incorrect answers to any of the checkpoint

questions or (2) demonstrated suspicious annotation patterns (e.g., marking all pairs as “normal”).

After excluding based on this criteria, we obtained 100,532 valid annotations with an overall ac-

ceptance rate of 77%. We calculate the plausibility for each SP pair by taking the average rating

for the pair over all (at least 10) valid annotations, then linearly scaling this average from the 1-5

to 0-10 interval. This approach is similar to the post-processing in [52]. We present a sample of

SP pairs in Table 3.3. Some of the pairs are interesting. For example, for the dobj_amod relation,

annotators agree that lifting a heavy object is a usually used expression, while earning a rubber

object is rare.

2According to [112], Amazon MTurk (https://www.mturk.com/) has the largest worker population and highest anno-
tation quality compared to other crowdsourcing services.

3https://www.mturk.com/worker/help
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(a) dobj

SP Pair Plausibility

(eat, meal) 10.00
(close, door) 8.50

(convince, people) 7.75
(touch, food) 5.50

(hate, investment) 4.00
(confront, impulse) 2.78

(eat, mail) 0.00

(b) nsubj

SP Pair Plausibility

(singer, sing) 10.00
(law, permit) 7.78

(women, pray) 5.83
(realm, remain) 3.06
(victim, contain) 2.22

(bar, act) 1.39
(textbook, eat) 0.00

(c) amod

SP Pair Plausibility

(fresh, air) 9.77
(new, method) 8.89

(young, people) 6.82
(medium, number) 4.09
(immediate, food) 2.50

(eager, price) 1.36
(secret, wind) 0.75

(d) dobj_amod

SP Pair Plausibility

(lift, heavy object) 9.17
(design, new object) 8.00

(recall, previous object) 7.05
(attack, small object) 5.23
(drag, drunk object) 4.25

(inform, weird object) 3.64
(earn, rubber object) 0.63

(e) nsubj_amod

SP Pair Plausibility

(friendly subject, smile) 10.00
(evil subject, attack) 9.00

(recent subject, demonstrate) 6.00
(random subject, bear) 4.00
(happy subject, steal) 2.25

(stable subject, understand) 1.75
(sunny subject, make) 0.56

Table 3.3: Sampled SP pairs from SP-10K and their plausibility ratings. object and subject are
place holders to help understand the two-hop SP relations.

Inner-Annotator Agreement

Following standard practices from previous datasets WSIM-203 [128] and Simlex-999 [52], we

employ Inter-Annotator Agreement (IAA), which computes the average correlation of an annotator

with the average of all the other annotators, to evaluate the overall annotation quality. As presented

in Table 3.4, the overall IAA of SP-10K is ρ = 0.75, which is comparable to existing datasets

WSIM-203 (0.65) and Simlex-999 (0.78).
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dobj nsubj amod d_a n_a overall

IAA 0.83 0.77 0.81 0.71 0.63 0.75

Table 3.4: Overall Inter-Annotator Agreement (IAA) of SP-10K. “d_a” stands for dobj_amod and
“n_a” stands for nsubj_amod.

Unsurprisingly, the IAA is not uniform across different SP relations. As shown in Table 3.4,

complicated two-hop SP relations are more challenging and achieve relatively lower correlations

than the simpler one-hop relations. This experimental result shows that two-hop relations are more

difficult than one-hop SP relations. We also notice that the agreements among annotators for SP

relations involving the subjects of verbs are relatively low. The above observations are consistent

with our earlier discussion on annotation time, and further support the claim that verbs have stronger

preferences for their objects than their subjects.

3.3 Correlation between SP-10K and OMCS

In this section, we quantitatively analyze the relationship between SP and commonsense knowl-

edge. Currently, the largest commonsense knowledge dataset is the Open Mind Common Sense

(OMCS) from the ConceptNet 5 [153] knowledge base. The OMCS contains 600k crowdsourced

commonsense triplets such as (food, UsedFor, eat) and (wind, CapableOf, blow to east). All of

the relations in OMCS are human-defined. In comparison, SP only relies on naturally occurring

dependency relations, which can be accurately identified using existing parsing tools [142].

We aim to demonstrate how SP is related to commonsense knowledge. Building relationships

between SP and human-defined relations has two advantages: (1) We may be able to directly ac-

quire commonsense knowledge through SP acquisition techniques. (2) We may be able to solve

commonsense reasoning tasks from the perspective of SP, as illustrated through the two Winograd

examples in Section 3.1. These advantages motivate exploring the potential of using SP to represent

commonsense knowledge.

3.3.1 SP Pairs and OMCS Triplets

We hypothesize that the plausibility of an SP pair relates to how closely the pair aligns with human

commonsense knowledge. As such, the more plausible pairs in SP-10K should be more likely to
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Group #Pairs #Exact Match #Partial Match
(Percentage) (Percentage)

Perfect 755 85 (11.26%) 287 (38.01%)
Good 2,600 67 (2.58%) 885 (34.04%)

Normal 2,809 20 (0.71%) 504 (17.94%)
Unusual 2,396 6 (0.25%) 187 (7.80%)

Impossible 1,440 5 (0.35%) 82 (5.69%)

Table 3.5: Matching statistics of SP pairs by plausibility.

(a) Exact Match (b) Partial Match

Figure 3.3: Matched SP relations and OMCS relations. Interesting relation matches such as “dobj”
versus “UserFor,” “nsubj” versus “CapableOf,” and “amod” versus “HasProperty” are observed.

be covered by the OMCS dataset.

Using plausibility as our criterion, we split the 10,000 SP pairs into five groups: Perfect (8-10),

Good (6-8), Normal (4-6), Unusual (2-4), and Impossible (0-2). As OMCS triplets contain phrases

and SP pairs only contain words, we use two methods to match SP pairs with OMCS triplets. (1)

Exact Match: we identify triplets in OMCS where the two dependents are exactly the same as the

two words in an SP pair. (2) Partial Match: we identify triplets in OMCS where the two dependents

contain the two words in an SP pair. We count SP pairs that fulfill either of these matching methods

as covered by OMCS. Note that exact matches are not double-counted as partial matches.

As shown in Table 3.5, almost 50% of SP pairs in the perfect group are covered by OMCS.

In contrast, only about 6% of SP pairs from the impossible group are covered. More plausible

selectional preference pairs are more likely to be covered by OMCS, which supports our hypothesis

of more plausible SP pairs being more closely aligned with human commonsense knowledge.
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(a) Perfect group (Plausibility: 8-10)

SP relation SP pair versus OMCS triplets

“dobj”
(sing, song) (9.25/10)
(song, UsedFor, sing)

“nsubj”
(phone, ring) (8.75/10)

(phone, CapableOf, ring)

“amod”
(cold, water) (8.86/10)

(water, HasProperty, cold)

“dobj_amod”
(create, new) (8.25/10)

(create idea, UsedFor, invent new things)

“nsubj_amod”
(hungry, eat) (10.00/10)

(eat, MotivatedByGoal, are hungry)

(b) Impossible group (Plausibility: 0-2)

SP relation SP pair versus OMCS triplets

“dobj”
(eat, mail) (0.00/10)

(mail letter, HasSubevent, eat cheese)

“nsubj”
(library, love) (1.25/10)

(love, Atlocation, library)

“amod”
(red, child) (0.68/10)

(child wagon, HasProperty, red)

“dobj_amod”
(drive, bottom) (1.50/10)

(drive car, HasSubevent, bottom out)

“nsubj_amod”
(fun, hurt) (1.50/10)

(having fun, HasSubevent, get hurt)

Table 3.6: Examples of OMCS-covered SP pairs and their corresponding OMCS triplets.

3.3.2 SP and Human-defined Relations

To show the connection between SP relations and human-defined relations, we visualize all match-

ing (SP pair, OMCS triplet) tuples in Figure 3.3. A darker color indicates a greater number of

matched tuples, which in turn suggests a stronger connection between the two relations.

We observe some clear and reasonable matches such as (“dobj,” “UsedFor”), (“nsubj,” “Ca-

pableOf”), and (“amod,” “HasProperty”), which demonstrates that some simple human-defined

relations like “UsedFor,” “CapableOf,” and “HasProperty” are related to corresponding SP rela-

tions. We also notice that the five SP relations in SP-10K seldom match some OMCS relations
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such as “HasA” and “HasSubevent,” which indicates a need for additional SP relations or even the

combination of different SP relations. We leave it for our future work.

3.3.3 Case Study

We present a selection of covered pairs from the perfect and impossible groups in Table 3.6. For the

perfect group, we find that human-defined commonsense triplets often have neatly corresponding

SP pairs. On the other hand, for the impossible group, SP pairs are covered by OMCS either

because of incidental overlap with a non-keyword, e.g., “child” in “child wagon,” or because of

the low quality of some OMCS triplets. This further illustrates that OMCS still has room for

improvement and that SP may provide an effective way to improve commonsense knowledge.

3.4 Effect of SP-10K knowledge on Winograd Schema Chal-
lenge

As introduced in Section 3.1, a novel contribution of this thesis is the two-hop Selectional Prefer-

ence relations: “nsubj_amod” and “dobj_amod.” To demonstrate their effectiveness, we select a

subset4 of the Winograd Schema Challenge dataset [72], which leverages the two-hop selectional

preference knowledge to solve. In total, we have 72 questions out of overall 285 questions. The

selected Winograd question is defined as follows: Given one sentence s containing two candidates

(n1, n2) and one pronoun p, which is described with one adjective a, we need to find which candi-

date is the pronoun referring to. One example is as follows:

• Jim yelled at Kevin because he was so upset.

We need to correctly finds out he refers to Jim rather than Kevin. These tasks are quite challeng-

ing as both the Stanford CoreNLP coreference system and the current state-of-the-art end-to-end

coreference model [70] cannot solve them. To solve that problem from the perspective of selec-

tional preference (SP), we first parse the sentence and get the dependency relations related to the

two candidates. If they appear as the subject or the object of the verb h, we will then check the SP

score of the head-dependent pair (h, d) on relations “nsubj_amod” and “dobj_amod” respectively.

4We select all examples that use one adjective to describe the targeting pronoun and all selected questions are listed
in the appendix.
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Model Correct Wrong NA Ap Ao

Stanford 33 35 4 48.5% 48.6%
End2end 36 36 0 50.0% 50.0%

SP-10K 13 0 59 100% 59.0%

Table 3.7: Result of different models on the subset of Winograd Schema Challenge. NA means
that the model cannot give a prediction, Ap means the accuracy of predict examples without NA
examples, and Ao means the overall accuracy.

After that, we compare the SP score of two candidates and select the higher one as the prediction

result. If they have the same SP score, we will make no prediction.

We show the result of collected human-labeled data in “SP-10K.” From the result, we can

see that “SP-10K” can solve that problem with very high precision. But as we only label 4,000

multi-hop pairs, the overall coverage is limited. The experimental result shows that if we can

automatically build a good multi-hop SP model, we could make some steps towards solving the

hard pronoun coreference task, which is viewed a vital task of natural language understanding.
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CHAPTER 4

ASER: A LARGE-SCALE
EVENTUALITY-CENTRIC COMMONSENSE

KNOWLEDGE GRAPH

Chapter 3 has demonstrated lower-order selectional preference can effectively represent rich com-

monsense knowledge, but a lot of higher-order selectional preference knowledge over multiple

eventualities is still not well studied. In this chapter, we introduce the proposed eventuality-centric

knowledge graph ASER, which can serve as an efficient representation methodology for both the

lower-order and higher-order selectional preference. Specifically, we first present a formal def-

inition of an eventuality-centric commonsense knowledge graph in Section 4.1. After that, we

introduce a linguistic rules-based extraction pipeline that can automatically extract ASER from

unlabelled corpora in Section 4.2. Knowledge graph statistics, intrinsic evaluation, and extrinsic

evaluations are presented in Section 4.3, 4.4, and 4.5, respectively.

I am tired

I sleep I need a rest

I go

I am hungry

I do not have lunch I eat pizza

I make an appointment

I arrive on time

I

eat

pizza

nsubj dobj

Synchronous
(1.0)

Conjunction
(8.0)

Conjunction
(73.4)Contrast

(3.7)

Conjunction
(0.5)

Co-Occurence
(4.0)

Succession
(0.5)

Reason
(2.0)

(Frequency: 57)

(Frequency: 0)I eat plate

(Frequency: 0)I eat fork

Figure 4.1: ASER Demonstration. Eventualities are connected with weighted directed edges. Each
eventuality is a dependency graph.

4.1 Overview of ASER

As demonstrated in Figure 4.1, ASER is a hybrid graph combining a hypergraph {V,E} where

each hyperedge is constructed over vertices, and a traditional graph {E,R} where each edge is built
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among eventualities. For example, Eh=(I, am, hungry) and Et=(I, eat, anything)

are eventualities, where we omit the internal dependency structures for brevity. They have a relation

〈Eh,Result,Et〉, where Result is the relation type. We devise the formal definition of ASER

as below.

Definition 4.1.1 ASER KG is a hybrid graph H of eventualities E’s. Each eventuality E is a

hyperedge linking to a set of vertices v’s. Each vertex v is a word in the vocabulary. We define

v ∈ V in the vertex set and E ∈ E in the hyperedge set. E ⊆ P(V) \ {∅} is a subset of the power

set of V. We also define a relation Ri,j ∈ R between two eventualities Ei and Ej, where R is the

relation set. Each relation has a type T ∈ T where T is the type set. Overall, we have ASER KG

H = {V,E,R,T}.

With this formulation, we can use the frequency of nodes or edges in ASER to represent the

lower-order or higher-order selectional preference, respectively.

4.1.1 Eventuality

Different from named entities or concepts, which are noun phrases, eventualities are usually ex-

pressed as verb phrases, which are more complicated in structure. Our definition of eventualities

is built upon the following two assumptions: (1) syntactic patterns of English are relatively fixed

and consistent; (2) the eventuality’s semantic meaning is determined by the words it contains. To

avoid the extracted eventualities being too sparse, we use words fitting certain patterns rather than

a whole sentence to represent an eventuality. In addition, to make sure the extracted eventuali-

ties have complete semantics, we retain all necessary words extracted by patterns rather than those

simple verbs or verb-object pairs in sentences. The selected patterns are shown in Table 4.1. For

example, for the eventuality (dog, bark), we have a relation nsubj between the two words to

indicate that there is a subject-of-a-verb relation in between. We now formally define an eventuality

as follows.

Definition 4.1.2 An eventuality E is a hyperedge linking multiple words {v1, . . . , vN}, where N is

the number of words in eventuality E. Here, v1, . . . , vN ∈ V are all in the vocabulary. A pair of

words in E (vi, vj) may follow a syntactic relation ei,j. The weight of E, denoted asw(e)
E , is defined

by the frequencies of appearance in the whole corpora.
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Table 4.1: Selected eventuality patterns (“v” stands for normal verbs other than “be”, “be” stands
for “be” verbs, “n” stands for nouns, “a” stands for adjectives, and “p” stands for prepositions.),
Code, and the corresponding examples.

Pattern Code Example

n1-nsubj-v1 s-v “The dog barks”
n1-nsubj-v1-dobj-n2 s-v-o “I love you”
n1-nsubj-v1-xcomp-a s-v-a “He felt ill”
n1-nsubj-v1-xcomp-v2 s-v-v “I want to go”
n1-nsubj-(v1-iobj-n2)-dobj-n3 s-v-o-o “You give me the book”
n1-nsubj-v1-xcomp-v2-dobj-n2 s-v-v-o “I want to eat the apple”
n1-nsubj-(v1-dobj-n2)-xcomp-v2-dobj-n3 s-v-o-v-o “I ask you to help us”
n1-nsubj-(v1-dobj-n2)-xcomp-(v2-iobj-n3)-
dobj-n4

s-v-o-v-o-o “president urges the congress to make her
citizen”

n1-nsubj-a1-cop-be s-be-a “The dog is cute”
n1-nsubj-n2-cop-be s-be-o “He is a boy”
n1-nsubj-v1-xcomp-n2-cop-be s-v-be-o “I want to be a hero”
n1-nsubj-v1-xcomp-a1-cop-be s-v-be-a “I want to be slim”
n1-nsubj-(v1-iobj-n2)-xcomp-n3-cop-be s-v-o-be-o “I want her to be hero”
n1-nsubj-(v1-iobj-n2)-xcomp-a1-cop-be s-v-o-be-a “I want her to be happy”
there-expl-be-nsubj-n1 there-be-o “There is an apple”
n1-nsubjpass-v1 spass-v “The bill is paid”
n1-nsubjpass-v1-dobj-n2 spass-v-o “He is served water”
n1-nsubjpass-v1-xcomp-v2-dobj-n2 spass-v-v-o “He is asked to help us”

We use patterns from dependency parsing to extract eventualities E’s from unstructured large-

scale corpora. Here ei,j is one of the relations that dependency parsing may return. Although in

this way the recall is sacrificed, our patterns are of high precision and we use very large corpora

to extract as many eventualities as possible. This strategy is also shared with many other modern

KGs [37, 6, 15, 172].

4.1.2 Eventuality Relation

For relations among eventualities, we follow PDTB’s [118] definition of relations between sen-

tences or clauses but simplify them to eventualities. Following the CoNLL 2015 discourse parsing

shared task [174], we select 14 discourse relation types and an additional co-occurrence relation to

build our knowledge graph.

Definition 4.1.3 A relation R between a pair of eventualities Eh and Et has one of the following

types T ∈ T and all types can be grouped into five categories: Temporal (including Precedence,
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Table 4.2: Eventuality relation types between two eventualities Eh and Et and explanations.

Relation Explanation

〈Eh,Precedence,Et〉 Eh happens before Et.
〈Eh,Succession,Et〉 Eh happens after Et.
〈Eh,Synchronous,Et〉 Eh happens at the same time as Et.

〈Eh,Reason,Et〉 Eh happens because Et happens.
〈Eh,Result,Et〉 If Eh happens, it will result in the happening of Et.
〈Eh,Condition,Et〉 Only when Et happens, Eh can happen.

〈Eh,Contrast,Et〉 Eh and Et share a predicate or property and have significant differ-
ence on that property.

〈Eh,Concession,Et〉 Eh should result in the happening of E3, but Et indicates the opposite
of E3 happens.

〈Eh,Conjunction,Et〉 Eh and Et both happen.
〈Eh,Instantiation,Et〉 Et is a more detailed description of Eh.
〈Eh,Restatement,Et〉 Et restates the semantics meaning of Eh.
〈Eh,Alternative,Et〉 Eh and Et are alternative situations of each other.
〈Eh,ChosenAlternative,Et〉 Eh and Et are alternative situations of each other, but the subject

prefers Eh.
〈Eh,Exception,Et〉 Et is an exception of Eh.

〈Eh,Co-Occurrence,Et〉 Eh and Et appear in the same sentence.

Succession, and Synchronous), Contingency (including Reason, Result, and Condition), Com-

parison (including Contrast and Concession), Expansion (including Conjunction, Instantiation,

Restatement, Alternative, ChosenAlternative, and Exception), and Co-Occurrence. The detailed

definitions of these relation types are shown in Table 4.2. The weight of R = 〈Eh, T ,Et〉, which is

denoted as w(r)
R , is defined by the sum of weights of 〈Eh, T ,Et〉 that appear in the whole corpora.

4.1.3 ASER Conceptualization

As aforementioned, to overcome the challenge that trivial commonsense is often omitted in hu-

mans’ communication, we propose to leverage the conceptualization to generalize the knowledge

about observed eventualities to unseen ones. For each eventuality E ∈ E, whose weight isw(e)
E , and

we can conceptualize E to E′ with confidence w(c)
E,E′ , we will get a new conceptualized eventuality

E′ with the weight w(c)
E′ = w

(e)
E ·w

(c)
E,E′ . Similarly, assume that an edge R ∈ R is 〈Eh, T ,Et〉 and

its weight is w(r)
R , and Eh and Et can be conceptualized to E′h and E′t with the confidence w(c)

Eh,E′h
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and w(c)
Et,E′t

, respectively. We can then get a new conceptualized edge 〈E′h, T ,E′t〉 with the weight

w
(r)
R ·w

(c)
Eh,E′h

·w(c)
Et,E′t

. Details about how to leverage an external hypernym knowledge base to get

the conceptualized eventualities and how do we determine the confidence scores are presented in

Section 4.2.

4.1.4 KG Storage

In total, we use the following three tables of the SQLite database to store ASER.

• Eventuality: As aforementioned, all eventualities in ASER are dependency graphs, where

vertices are the words and edges are dependency relations. We generate unique “eids” for

eventualities by hashing their words, pos-tags and dependencies and store eventualities in an

Eventuality table with SQLite database where “eids” is the key, and patterns, verb(s), skeleton

words, words, pos-tags, dependencies, and frequencies are the other attribute columns.

• Concept: To effectively distinguish the eventualities before and after the conceptualization,

we store eventualities created by the conceptualization step in another Concept table and

denote the id as “cid”. As the dependency edges are inherited from the original eventuali-

ties, we only hash the conceptualized words to generate the “cids.” For each concpetualized

eventuality, we store its “cid,” pattern, frequency, and “eids” of the original eventualities.

• Relations: In the end, we store the relations between eventualities in the Relations table.

For each pair of eventualities (i.e., Eh and Et), if there is at least an edge between them,

we will create an instance and generate a “rid” for them by hashing the concatenation of

their “eids”. For the storage efficiency and retrieval feasibility, we store all edges and the

associated weights between Eh and Et as well as the eventuality ids of Eh and Et in that

instance.

4.2 Knowledge Extraction

In this section, we introduce the knowledge extraction methodologies for building ASER.
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Figure 4.2: ASER construction framework. The extraction and the conceptualization process are
shown in the orange dash-dotted and green dashed box respectively. The blue database is Probase
and three gray databases are the resulted ASER.

4.2.1 System Overview

The overall framework of our extraction system is shown in Figure 4.2 After collecting the raw

corpora, we first preprocess the texts with the dependency parser. Then we perform eventuality

extraction with the pattern matching. We collect sentences and adjacent sentence pairs that contain

more than two eventualities into a instance collection. After that, we extract discourse relations

from these candidate instances with the help of an explicit discourse parser [166]. Considering

that the discourse argument span given by the discourse parser might not be identical to the ex-

tracted eventualities, we apply token-based Simpson’s similarity between the arguments spans and

eventualities to determine whether the discourse arguments is enough to represent the meaning of

the extracted eventualities, and we only keep the extraction results with the Simpson’s similarity

larger than 0.8. After the initial ASER construction, we leverage the IS-A relations between nouns

and named entities from Probase [172] to conduct the conceptualization. In the end, we aggre-

gate relations between conceptualized eventualities by retrieving head and tail eventualities from

the conceptualized eventuality database and the eventuality relation database. In the following

sub-sections, we will introduce each part of the system separately.
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4.2.2 Corpora

To make sure the broad coverage of ASER, we select corpora from different resources (reviews,

news, forums, social media, movie subtitles, e-books) as the raw data. The details of these datasets

are as follows.

• Yelp: Yelp is a social media platform where users can write reviews for businesses (e.g.,

restaurants) The latest release of the Yelp dataset1 contains over five million reviews.

• New York Times (NYT): The NYT [137] corpus contains over 1.8 million news articles from

the NYT throughout 20 years (1987 - 2007).

•Wiki: Wikipedia is one of the largest free knowledge dataset. To build ASER, we select the

English version of Wikipedia.2

• Reddit: Reddit is one of the largest online forums. In this work, we select the anonymized

post records3 over one period month.

•Movie Subtitles: The movie subtitles corpus was collected by [83] and we select the English

subset, which contains subtitles for more than 310K movies.

• E-books: The last resource we include is the free English electronic books from Project

Gutenberg.4

We merge these resources as a whole to perform the knowledge extraction. The detailed statis-

tics are presented in Table 4.3.

4.2.3 Preprocessing

For each document, we aim to extract eventualities, relations between eventuality, conceptualized

eventualities, as well as relations between conceptualized eventualities. Based on the consideration

of the text parsing complicity and quality, we parse each paragraph5 instead of a whole document

1https://www.yelp.com/dataset/challenge

2https://dumps.wikimedia.org/enwiki/

3https://www.reddit.com/r/datasets/comments/3bxlg7

4https://www.gutenberg.org/

5As the discourse parser extract discourse relations by the constituency tree of a sentence or trees of adjacent sen-
tences, parsing sentences one by one would miss or misclassify some discourse relations.
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Table 4.3: Statistics of used corpora. (M means millions and G means Gigabytes.)

Name # Sentences # Tokens Corpus Size Category

YELP 54.5 M 838.8 M 2.5G Reviews
NYT 49.8 M 1,179.4 M 3G News
Wiki 110.6 M 2,435.4 M 13G Knowledge

Reddit 253.6 M 3,371.3 M 21G Forum
Subtitles 444.6 M 3,229.4 M 13G Movie Scripts
E-books 210.6 M 3,610.0 M 21G Stories

Overall 1,123.7 M 14,664.2 M 73.5G -

Algorithm 1 Eventuality Extraction with One Pattern p

INPUT: Parsed dependency graph D, center verb v, positive dependency edges P
(pos)
p , optional

edges P(opt)
p , and negative edges P(neg)

p .
OUTPUT: extracted eventuality E.

1: Initialize eventuality edge list D′.
2: Set the center verb v as the v1 in the pattern p.
3: for each connection d (a relation and the associated word) in positive dependency edges P(pos)

p

do
4: if find d in D then
5: Append d in D′.
6: else
7: Return null.
8: for each connection d in optional dependency edges P(opt)

p do
9: if find d in D then

10: Append d in D′.
11: for each connection d in negative dependency edges P(neg)

p do
12: if find d in D then
13: Return null.
14: Build eventuality instance E from D′

15: Return E

with the CoreNLP tool6 to acquire the lemazied tokens, pos-tags, named entities, the dependency

graph, and the constituency tree. Before parsing, we replace urls with a special token 〈URL〉 and

drop tables in Reddit data.

4.2.4 Eventuality Extraction

To make sure that all the extracted eventualities are semantically complete without being too

6https://stanfordnlp.github.io/CoreNLP
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complicated, we design 18 patterns to extract the eventualities via pattern matching. Each of the

patterns contains three kinds of dependency edges: positive dependency edges, optional depen-

dency edges, and negative dependency edges. All the positives edges are shown in Table 4.1. Six

more dependency relations (advmod, amod, nummod, aux, compound, and neg) are optional

dependency edges that can associate with any of the selected patterns. We omit all optional edges

in the table because they are the same for all patterns. All other dependency edges are considered

as negative dependency edges, which are designed to make sure all the extracted eventualities are

semantically complete and all the patterns are exclusive with each other. Take sentence “I have a

book” as an example, we will only select <“I,” “have,” “book”> rather than <“I,” “have”> as the

valid eventuality, because “have”-dobj-“book” is a negative dependency edge for pattern “s-v.”

To extract eventualities from sentence s, considering that smay contains multiple eventualities,

we first split it into simple clauses based on the constituency tree. To do so, besides the commonly

used SBAR node, we also follow previous discourse parsing systems [166] to use a connective

classifier to detect possible separators. As a result, we split sentences based on both the subordinate

conjunctions and connectives. After that, for each verb v in sentence s, we find the dependency

graph D of the simple clause that contains v. We then try to match D with all patterns one by one.

For each pattern, we put the verb v as the starting point (i.e., v1 in the pattern), and then try to

find all the positive dependency edges. If we can find all the positive dependency edges around the

center verb, these match edges and words linked by these edges are considered as potential edges

and words of one valid eventuality. Next, other edges and words are added via optional dependency

edges. In the end, we will check if any negative dependency edge can be found in the dependency

graph. If not, we will keep current edges and words as one valid eventuality. Otherwise, we will

disqualify it. The pseudo-code of the eventuality extraction algorithm is in Algorithm 1. The time

complexity of eventuality extraction is O(|S| · |D| · |V(v)|) where |S| is the number of sentences, |D|

is the average number of dependency edges in a dependency parse tree, and |V(v)| is the average

number of verbs in a sentence.

4.2.5 Eventuality Relation Extraction

We then introduce how to extract the relations between eventualities. Specifically, we employ

an end-to-end discourse parser to extract the discourse relations. The job of the discourse parser

is to parse a piece of text into a set of discourse relations between two adjacent or non-adjacent
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Algorithm 2 Eventuality Relation Extraction
INPUT: Parsed constituency trees K1 and K2 from adjacent sentences.
OUTPUT: Extracted relations R.

1: Initialize relation list R as empty.
2: Extract possible connectives C by a connective extractor given K1 and K2.
3: for each possible connective c ∈ C do
4: if two arguments of c in the same sentence then
5: Extract A1 and A2 by a SS arguments extractor given c and the sentence.
6: else
7: Extract A1 by a PS argument1 extractor given c and K1
8: Extract A2 by a PS argument2 extractor given c and K2
9: if A1 is not null and A2 is not null then

10: Classify the relation y by a explicit relation classifier given c, K1, and K2
11: Find eventualities Eh that are extracted from A1
12: Find eventualities Et that are extracted from A2
13: Set weight w as 1/(|Eh| · |Et|)
14: for each eventuality Eh in Eh do
15: for each eventuality Et in Et do
16: Build relation instance R = 〈Eh,y,Et〉 with a weight w.
17: Append R in R

18: Return R

discourse units. Take sentence “I have a story book but it is not interesting.” as an example.

Ideally, a good discourse parser would extract “I have a story book” as arg1, “it is not interesting”

as arg2, “but” as the connective, and annotate the relation as “Contrast.” In our current pipeline,

we use the state-of-the-art discourse parser [166], which is pretrained on the CoNLL 2015 Shared

Task data (PDTB) [174]. From CoNLL 2015 results,7 we can find out that this discourse parser

can achieve 90.00% and 90.79% F1 scores on the test data from PDTB and the blind test data from

Wikinews respectively on the explicit relation classification, but performance drops to 42.72% and

34.45% on the implicit relation classification. Hence, to guarantee the extraction quality, we only

consider the explicit discourse relations. In explicit discourse parsing, there are two situations:

both arguments are in the same sentence or not. As statistics show that less than 0.1% cases that

arguments are located in non-adjacent sentences in the explicit part, we simply assume arguments of

which argument1 is located in the same sentence (SS) and the previous sentence (PS). Specifically,

the explicit discourse parser is consist of five components: (1) connective extractor to identify

whether a word is a possible connective, (2) arg1 position classifier to decide whether the arg1 is

located in the same sentence as the connective c or in the previous sentence of c; (3) SS argument

7https://www.cs.brandeis.edu/~clp/conll15st/results.html
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extractor to extract the spans of two arguments in the same sentence; (4) PS argument extractor to

extract the spans of two arguments in adjacent sentences; (5) explicit relation classifier to classify

the relation type of c. Extractors in this system are essentially binary classifiers to identify whether

a word is a connective or a part of any argument. The pseudo-code of eventuality relation extraction

algorithm is shown in Algorithm 2.

As the extracted arguments might not be identical as the extracted eventualities, we use the

Simpson’s similarity to determine whether the discourse relations between arguments can be as-

signed to the extracted eventualities:

w
(sim)
A,E = Simpson(A,E) =

|WA ∪WE|

min{|WA|, |WE|}
, (4.1)

whereA is an argument, E is an eventuality, WA and WE are token sets ofA and E, | · | is the size of a

token set. If the similarity Simpson(A,E) > 0.8,8 we consider the argument-level relations relevant

to A can be assigned to the eventuality E with a weight w(sim)
A,E , which is inversely proportional to

the size of all matched eventualities |E|.

4.2.6 Enriching ASER with Conceptualization

We then introduce the conceptualization details. For each noun or pronoun in the extracted eventu-

alities, we will try to conceptualized it to a higher level with the following steps. If it is a named en-

tity, we will conceptualized it to the corresponding NER tags. Specifically, we include the 13 NER

types: “TIME,” “DATE,” “DURATION,” “MONEY,” “PERCENT,” “NUMBER,” “COUNTRY,”

“STATE_OR_PROVINCE,” “CITY,” “NATIONALITY,” “PERSON,” “RELIGION,” and “URL.”

If it is a single personal pronoun (e.g., “he” or “she”), we will conceptualize it to “PERSON.”9 As

all aforementioned conceptualization is designed by experts, we set the conceptualization proba-

bility to be 1. If it is a normal noun, we will try conceptualize it with Probase [172]. Specifically,

for each noun, we will retrieve its top-five hypernyms (i.e., concepts) and the associated probability

from Probase.

Given an eventuality E with m tokens t1, t2, · · · , tm to be mapped into concept tokens, we

8We choose 0.8 because it gives the best balance between quantity and quality.
9If there are multiple people in the same edge, we will distinguish them with “PERSON0” and “PERSON1” etc..
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conceptualize it to a conceptualized eventuality C with the probability

Pr(C|E) =
m∏
i=1

Pr(t(c)i |t
(e)
i ). (4.2)

Here t(c)i is the corresponding token-level concept for token t(e)i . And Pr(t(c)i |t
(e)
i ) is the like-

lihood for 〈t(e)i ,IS-A, t(c)i 〉 provided by Probase or 1.0 if t(e)i can be conceptualized with seed

rules. For each conceptualized eventuality C, we would have a list of eventualities EC that can be

conceptualized to it. We can then compute the overall weight of C with

w
(c)
C =

∑
E∈EC

Pr(C|E) ·w(e)
E , (4.3)

where w(e)
E is the weight of E. We then introduce how to construct the edges between a con-

ceptualized eventuality C and an original eventuality E. For any E′ ∈ EC, if there is an edge

〈E′, T ,E〉 or 〈E, T ,E′〉, we can then construct a new edge 〈C, T ,E〉 or 〈E, T ,C〉 with the weight

Pr(C|E′) ·w(r)
〈E′,T ,E〉 or Pr(C|E′) ·w(r)

〈E,T ,E′〉, respectively, where w(r)
R means of weight of the relation

R. Similarly, we can construct the edges between two conceptualized eventualities Ch and Ct. For

any Eh ∈ ECh
and Et ∈ ECt

, if there is an edge 〈Eh, T ,Et〉, we can then construct a new edge

〈Ch, T ,Ct〉 with the weight w(r)
〈Ch,T ,Ct〉 = Pr(Ch|Eh) ·w

(r)
〈Eh,T ,Et〉 · Pr(Ct|Et).

4.2.7 ASER Building Example

In the end of this section, we use an example to demonstrate the whole extraction pipeline. As

shown in Figure 4.3, given a sentence “My army will find your boat. In the meantime, I’m sure

we could find you suitable accommodations.”,10 our system will first detect the possible connective

“meantime” and split this text into four simple clauses: “My army will find your boat,” “In the,”

“I’m sure,” and “we could find you suitable accommodations” with the constituency parsing. After

that, our system will leverage the patterns designed in Table 4.1 to extract eventualities from raw

text by Algorithm 1. At the same time, two arguments “My army will find your boat” and “we

could find you suitable accommodations” are extracted by argument extractors. And this discourse

parsing system predicts the corresponding discourse relation as Synchronous. As the first and last

10This case comes from Movie Subtitles.
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Synchronous

My army will find your boat. In the meantime, I'm sure we 
could find you suitable accommodations.

Clause Splitting

My army will find 
your boat I’m sure we could find you 

suitable accommodations

my army will find 
your boat I am sure we could find you 

suitable accommodations

Eventuality
Extraction

meantime

Connective Extraction

My army will 
find your boat

we could find you 
suitable accommodations

Argument
Extraction Relation

Classification
In the

I sleepI am sure

I sleepwe could find you 
suitable accommodations

I sleepmy army will find 
your boat

Synchronous (1.0)

Co-Occurrence (1.0)

I sleepPERSON is sure

I sleepPERSONX find 
PERSONY SERVICE

I sleeparmy find 
VEHICLE Synchronous (0.003)

Co-Occurrence (0.019)I sleepINSTITUTION
find boats I sleepPERSONX find 

PERSONY FACILITY
Synchronous (0.001)

Synchronous (0.001)

Synchronous (0.003)

Co-Occurrence (0.056)

Conceptualization

Figure 4.3: ASER building example. The eventuality extraction, the relation extraction, and the
conceptualization process are shown in green, violet, and orange colors, respectively. For the clear
representation, for each conceptualized eventuality, we only show the skeleton words and hide the
optional ones.

extracted eventualities can perfectly match the extracted arguments, we then create an edge 〈 “my

army will find your boat”, Synchronous, “we could find you suitable accommodations” 〉. And

we also create an edge 〈 “I am sure,” Co-Occurrence, “we could find you suitable accommo-

dations” 〉 because the two eventualities appear in the same sentence. After extracting the original

eventualities and edges, we then try to expand it with the conceptualization.11 For example, “I am

sure” can be directly conceptualized as “PERSON is sure” directly because “I” is a personal pro-

noun. As both of the other two eventualities contain normal nouns (i.e., “army”), these eventualities

can be conceptualized to multiple eventualities. After checking Probase, we find out that “army”

can be conceptualized to “INSTITUTION” and “ORGANIZATION” with the weights 0.0.058 and

11In the real system, we first extract the original ASER, and then apply the conceptualization step over the whole KG.
The presented single sentence example is just for the demonstration.
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0.038, “boat” can be conceptualized to “VEHICLE” and “ITEM” with the weights 0.059 and 0.049,

“accommodation” can be conceptualized to “SERVICE” and “FACILITY” with the weights 0.056

and 0.019 respectively. We show the two most likely results for each original eventuality (if it

has multiple possible conceptualization results) in Figure 4.3. In the end, we can construct edges

between conceptualized eventualities, where the weights are the product of conceptualization prob-

abilities, e.g., 〈 “INSTITUTION find boats”, Synchronous, “PERSONX find PERSONY SER-

VICE” 〉 with the weight 0.058× 0.056 = 0.003, 〈 “PERSON is sure,” Co-Occurrence, “PER-

SONX find PERSONY FACILITY” 〉 with the weight 1.000× 0.019 = 0.019.

4.3 ASER Statistics

Table 4.4: Statistics of the eventuality extraction. # Eventuality and # Unique mean the total number
and the unique number of extracted eventualities using corresponding patterns or conceptualized
eventualities from them.

Pattern
ASER (full) ASER (core) ASER (concept)

# Eventuality # Unique # Eventuality # Unique # Unique

s-v 351,082,855 100,645,728 260,663,083 14,337,769 1,022,415
s-v-o 284,103,317 159,948,356 139,031,585 18,100,360 8,252,653
s-v-a 11,546,768 6,149,584 5,951,980 752,468 139,087
s-v-v 24,549,946 11,129,566 14,624,526 1,591,424 216,413

s-v-o-o 6,154,685 3,789,253 2,765,728 460,526 514,084
s-v-v-o 29,445,708 18,659,717 12,720,497 2,187,577 1,482,783

s-v-o-v-o 3,863,478 2,674,229 1,462,883 288,326 522,613
s-v-o-v-o-o 91,532 59,290 40,428 8,499 18,461

s-be-a 79,235,136 29,845,112 52,068,570 3,733,978 465,747
s-be-o 98,411,474 53,503,410 49,979,659 6,337,042 2,312,209

s-v-be-a 1,927,990 982,438 1,035,864 123,263 29,738
s-v-be-o 2,322,890 1,574,896 909,250 184,298 139,239

s-v-o-be-a 277,087 191,973 100,917 18,793 6,151
s-v-o-be-o 307,031 231,289 95,815 22,411 32,796
there-be-o 16,021,849 6,642,438 10,013,628 953,041 39,500

spass-v 61,524,872 38,270,144 25,935,769 3,498,516 276,817
spass-v-o 5,519,982 4,129,709 1,677,244 330,229 154,410

spass-v-v-o 257,004 221,820 46,475 11,738 14,901

Overall 976,643,604 438,648,952 579,123,901 52,940,258 15,640,017

In total, we collect 976,643,604 eventualities from the raw documents. We filter those low-

frequency eventualities that only appear once and retain 52,940,258 unique eventualities in ASER
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Table 4.5: Statistics of the eventuality relation extraction.

Relation ASER (full) ASER (core) ASER (concept)

Precedence 14,058,213 1,790,016 4,798,015
Succession 4,939,291 663,183 1,963,820

Synchronous 19,464,898 3,123,042 8,013,943
Reason 9,775,829 2,205,076 6,439,128
Result 16,153,925 2,012,311 6,718,666

Condition 18,052,484 3,160,271 8,063,967
Contrast 59,333,901 8,655,661 24,978,311

Concession 5,684,395 477,155 1,499,276
Conjunction 82,121,343 13,978,907 45,597,200
Instantiation 1,278,381 18,496 93,266
Restatement 1,304,095 65,753 242,301
Alternative 3,539,892 583,174 123,883

ChosenAlternative 647,228 35,406 1,843,140
Exception 106,000 20,155 93,412

Co-Occurrence 412,054,590 49,232,161 113,744,814

Overall 648,514,465 86,020,767 224,213,142

(core). From table 4.4, we can find the “s-v” and “s-v-o” are the most frequent patterns. On the

other hand, even though those complex patterns appear relatively less frequent, thanks to the big

scale of ASER, they still appears thousands to millions times.

The original eventuality distribution is presented in Figure 4.4 (a). In general, the distribution

follows the Zipf’s law, where only a small number of eventualities appear many times while the

majority of eventualities appear only few times. To better illustrate the distribution of eventuali-

ties, we also show several representative eventualities along with their weights and we have two

observations. First, eventualities which can be used in general cases, like “i think (7,501,444)” and

“i know” (4,267,911) appear much more times than other eventualities. Second, eventualities in

ASER are more closely related to our daily life like “i sleep (18,347)” or “food is tasty (1,828)”

rather than domain-specific ones such as “iI learn python (16).”

Considering the quality and quantity of conceptualization results, we apply the conceptual-

ization over eventualities whose frequencies are no less than five. After the conceptualization,

we get 15,640,017 more unique eventualities. It is obvious that patterns with more nouns (e.g.,

“s-v-o,” “s-v-v-o,” “s-be-o”) dominate the conceptualized eventualities. The reason is that the con-

ceptualization is only designed for nouns and each noun phase would be replaced with a general

noun phase if such hypernym relation appears in Probase. For conceptualized eventualities, we
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(a) Extracted eventualities (b) Conceptualized eventualities

Figure 4.4: Eventuality distributions.

can observe the similar distribution in Figure 4.6 (b). The top three conceptualized eventualities

are “PERSON knows” (16,478,603.0), “PERSON thinks” (14,117,254.0), and “PERSON says”

(12,113,913.0). Although “i think” (7,501,444) appears the most in the raw data (“i know” appears

3,447,429 times in the raw data), but “you think” (1,444,333), “he thinks” (314,806), “they thinks”

(205,432), “we think” (196,633), “it thinks” (174,729), “she thinks” (142,628), ... appear much

less than “you know” (4,726,264), “he knows” (396,013), “they know” (260,656), “we know”

(457,115), “it knows” (247,409), “she knows” (190,803), ..., respectively. Finally, the weight of

“PERSON knows” exceeds that of “PERSON thinks”.
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(a) Precedence (b) Succession (c) Synchronous

(d) Reason (e) Result (f) Condition

(g) Contrast (h) Concession (i) Conjunction

(j) Instantiation (k) Restatement (l) Alternative

(m) ChosenAlternative (n) Exception (o) Co-Occurrence

Figure 4.5: Edge distributions by relation types.
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(a) Eventualities (b) Relations

Figure 4.6: Distributions of eventualities and relations.

As for relations, we collect 648,514,465 unique relations from six data resources across dif-

ferent categories. To reduce noises in parsing and extraction, we also filter out relations that∑
T ′∈Tw

(r)
〈Eh,T ′,Et〉 <= 1 where Eh and Et are the head eventuality and the tail eventuality. Further

more, if the head or the tail is filtered out by eventuality filtering, the relation would be dropped

as well. Finally, we keep 86,020,767 unique relations in ASER (core), among of which there

are 36,788,606 relations belonging to 14 discourse relation types depending on the connectives

and arguments, like Conjunction (e.g., “and”), Contrast (e.g., “but”), Condition (e.g., “if”), Syn-

chronous (e.g., “meanwhile”), Reason (e.g., “because”), Result (e.g., “so”). When we filter out

more low-frequency eventualities, the number of relations decreases slightly. For example, when

we keep high-frequency eventualities whose frequencies are no less than five, 26.0% of eventuali-

ties (13,766,746) and 61.5% of relations (88,629,385) are preserved. We apply the conceptualiza-

tion over these preserved eventualities and relations based on quantity and quality considerations.

And we get 15,640,017 unique conceptualized eventualities and 224,213,142 relations between

these conceptualized eventualities. It is interesting to see four-fold increases on Instantiation and

Exception which have the lowest numbers and a one-fold increase on Co-Occurrence which is the

major relation. Overall, we aggregate 260.7% relations between conceptualized eventualities.

To better understand the distributions of extracted and conceptualized knowledge, we show the

number of eventualities and edges over different filtering thresholds in Figure 4.6 (a) and Figure 4.6

(b), respectively. For the extracted knowledge, the number of eventualities and relations decreases

exponentially when the threshold ranges from 100 to 5. For the conceptualized knowledge, the
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rate of diminishing becomes further larger. When the threshold is less than 10, the conceptualized

eventuality size outperforms the original size. But it is significantly less than the size of extracted

eventualities as the threshold is larger than 10. On the other hand, the number of relations of

conceptualized eventualities always exceeds that the original relation size, which results in a denser

conceptualized knowledge graph. Above all, conceptualization is an extraordinary and excellent

method to mine commonsense knowledge.

4.4 Evaluation

In this section, we leverage human annotation to evaluate the quality of ASER from following

perspectives:

1. Eventuality Extraction: We first evaluate how well the extracted eventualities can represent

the semantics of the original sentence. For example, if the original sentence is “The kid

goes to study”, eventuality “kid-go-to-study” with pattern “s-v-v” can fully represent the

semantics, but eventuality “kid-go” with the pattern “s-v” cannot. We show the percentage of

all extracted eventualities that can fully represent the core semantic of the original sentences

based different eventuality patterns.

2. Lower-order Selectional Preference: Besides the extraction quality, we also care about how

well the eventuality statistics in ASER can reflect human’s selectional preference. For exam-

ple, the frequency of “I eat food” should be higher than “I eat house.” As such preference

appears inside eventualities, we denote them as the lower-order selectional preference.

3. Discourse Extraction: After evaluating the eventualities, we then evaluate how well the

extracted edges can correctly represent the discourse relations in the original sentence. For

example, assume that the original sentence is “he went to school while I was still prepar-

ing the breakfast.” and we have successfully extracted two eventualities “he went to school”

and “I was preparing breakfast”, the correct discourse relation between them should be “Syn-

chronous” rather than “Contrast.” In this evaluation, we report the accuracy based on different

discourse relations.

4. Higher-order Selectional Preference: Last but not least, we annotate whether edge frequen-

cies in ASER can reflect the higher-order selectional preference among eventualities or not.
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Figure 4.7: Human annotation of eventuality extraction quality.

For example, the frequency of “I am hungry”-Result-“I eat food” should be larger than “I

am hungry”-Reason-“I eat food.”

Evaluation details and result analysis are as follows.

4.4.1 Eventuality Extraction

To evaluate the correctness of the selected eventuality patterns and effectiveness of the extrac-

tion algorithms, we first employ the Amazon Mechanical Turk platform (MTurk)12 to evaluate the

quality of eventuality extraction. For each eventuality pattern, we randomly select 50 extracted

eventualities and then provide these extracted eventualities along with their original sentences to

the annotators. For each pair of eventuality and sentences, the annotators are asked to label whether

the extracted eventuality phrase can fully and precisely represent the semantic meaning of the orig-

inal sentence. If so, they should label them with “Valid.” Otherwise, they should label it with “Not

Valid.” For each eventuality, we invite six workers to label and if at least four of them label it as

“Valid,” we will consider it to be valid. In total, we collected 5,400 annotations. To make sure the

high annotation quality, we require all the annotators to be the master annotator on the MTurk.

The annotation results are shown in Figure 4.7. From the result we can see that all patterns

achieve over 90% accuracy, which demonstrates the high quality of the selected patterns and the

12https://www.mturk.com/
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association extraction algorithm. As introduced in Algorithm 1, to guarantee the quality of ex-

tracted eventualities, we require the extraction algorithm to be strict and selective. Specifically, if

there is an extra dependency edge not in the positive or possible relations of a corresponding pat-

tern, we will discard the whole sentence. By doing so, even though we sacrifice the overall recall,

we guarantee the high accuracy. Luckily, as our approach is unsupervised, we can remedy the recall

problem with larger scale corpus. Among the 18 patterns, we notice that the more complex patterns

tend to have relatively lower accuracy. This makes sense because the more complex an extracted

eventuality is, the more likely that some of the words are redundant to the eventuality semantics,

and thus the annotator may think that the extracted eventuality is not elegant enough.

4.4.2 Low-order Selectional Preference

To evaluate whether the eventuality frequencies in ASER can reflect human’s low-order selectional

preference, we first compare the plausibility of more frequent eventualities versus less frequent

ones. For each eventuality pattern, we randomly select 50 eventuality pairs such that they only

have one-word difference but with significant frequency difference. Specifically, we require the

frequency of the high frequent one to be larger than five, which is the medium frequency of all

eventualities, and the frequency of the high frequent one must be at least five times larger than the

frequency of the low frequent one. For each eventuality, we invite six annotators from MTruk to

ask them which one of the eventuality seems more plausible to them. If more annotators agree that

the more frequent one makes more sense, we will label that pair as positive correlation. On the

other hand, if more annotator agrees that the less frequent makes more sense, we will label that

pair as negative correlation. If the voting draws, we will label it as similar. As this evaluation fails

to consider the eventualities with the frequency zero (i.e., they do not exist in ASER) and whether

an eventuality exist or not is also a good preference indicator, we add another evaluation to prove

that. For each eventuality pattern, we randomly select 50 eventualities. And for each eventuality,

we randomly select an negative example by randomly changing a word inside the eventuality with

another word of the same postag label such that their grammar structure is the same. We also

conduct filtering to guarantee the negative examples do not appear in ASER. Last but not least, to

show the influence of the conceptualization, we conduct the aforementioned two experiments on
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(a) High Frequency VS Low Frequency (before). (b) Exist VS Non-exist (before).

(c) High Frequency VS Low Frequency (after). (d) (C) Exist VS Non-exist (after).

Figure 4.8: Human annotation of lower selectional preference in ASER. Experiments on the even-
tualities before and after the conceptualization are denoted with (O) and (C), respectively. Green
color indicates the number of eventuality pairs that the more frequent eventuality makes more sense,
and red color indicates the number of eventualities pairs the less frequent eventuality makes more
sense.

both the original ASER before the conceptualization and the final one after the conceptualization.13

We present the annotation results in Figure 4.8 and indicate the experiments on the eventualities

before and after the conceptualization with (O) and (C), respectively. Green color indicates the

number of eventuality pairs that the more frequent eventuality makes more sense, and red color

indicates the number of eventualities pairs the less frequent eventuality makes more sense. From

the result in Figure 4.8 (a), we can see that more than 70% of the eventuality pairs as positive

correlated, which is consistent with the previous study on the correlation between frequency and

13For the experiment on the ASER after the conceptualization, we only sample the conceptualized eventualities and
ignore the original ones.
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Figure 4.9: Human annotation of discourse relation extraction quality.

selectional preference [182]. At the same time, we also observe that about 30% of the less frequent

eventualities are also quite plausible, which is mainly because the frequency of an eventuality is also

severely influenced by the rareness of the words inside the eventuality. For example, the eventuality

“I eat avocado” appears much less than “I eat apple” because avocado is much more rare than apple

rather than “I eat apple” makes more sense than “eat avocado.” The results in Figure 4.8 (b) helps

prove that the low-frequent eventualities still contains rich low-order selectional preference because

for more than 90% of the pairs, the randomly extracted pairs in ASER makes more sense than those

out of ASER. In the end, the experimental results in Figure 4.8 (c) and (d) show that even though

the conceptualization process significantly improve the coverage of ASER, it would not hurt the

overall quality. This is mainly because during the conceptualization step, we carefully design the

new weights based on the original weight and the confidence scores provided by Probase [172].

4.4.3 Relation Extraction

Besides the eventuality extraction, we also care about the extraction quality of the discourse rela-

tions between them. For each relation type, we randomly select 50 edges and the corresponding

sentences and for each pair of them, we generate a question by asking the annotators if they think

the extracted discourse relation can represent the correct relation in the original sentence. If so, they

should label as “Valid.” Otherwise, they should label it as “Not Valid’.’ Similar to the eventuality

extraction experiment, we invite six annotators for each edge and is more than four of them agree
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that the extracted relations is “Valid,” we will label it as “Valid.”

From the results in Figure 4.9 we can see that the overall accuracy is about 80%, which is

consistent with the reported performance of the used discourse relations extraction system [166].

Besides that, we also notice that the model performance varies on different relation types. For

example, the model tends to perform well on simple types such as “Reason” and “Alternative”

because the popular connectives (i.e., “because” and “or”) are less ambiguous. As a comparison,

when the connective is more ambiguous (e.g., “while” for “Synchronous”), the overall performance

will drop.

4.4.4 Higher-order Selectional Preference

In the end, we evaluate whether the edge frequency in ASER can be used to reflect human’s high-

order selectional preference about eventualities. Similar to the evaluation on the lower-order se-

lectional preference, we conduct two experiments (i.e., (1) High frequency VS Low Frequency;

(2) Exist VS None-exist) on the ASER before and after the conceptualization.14 For the “High

frequency VS Low Frequency” experiment, we randomly sample 50 edge pairs for each relation

type such that the two edges in each pair share the same head eventuality, relation type, but differ-

ent tail eventuality (e.g., “I am hungry”-Result-“I eat food” versus “I am hungry”-Result-“I

exercise”). More importantly, the two sampled edge should have significantly different frequen-

cies. Specifically, we require the frequency of the high frequent one to be larger than five and the

frequency of the high frequent one must be at least five times larger than the frequency of the low

frequent one. For the “Exist VS None-exist” experiment, for each relation type, we first randomly

sample 50 edges, and then for each edge, we randomly replace a single word of the the tail eventu-

ality such that the new tail is very similar to the original one but the created edge does not exist in

ASER.

The annotations results are presented in Figure 4.10. In general, we can make the similar obser-

vations as the lower SP that the correlation is more significant when we compare the existing and

non-existing edges. Besides that, the experiments on the conceptualized ASER help demonstrate

that the conceptualization module will not influence the overall quality of edge frequencies.

14For the experiment on the ASER after the conceptualization, we only sample the conceptualized eventualities and
ignore the original ones.
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(a) High Frequency VS Low Frequency (O). (b) Exist VS Non-exist (O).

(c) High Frequency VS Low Frequency (C). (d) Exist VS Non-exist (C).

Figure 4.10: Human annotation of the higher selectional preference in ASER. Experiments on
the eventualities before and after the conceptualization are denoted with (O) and (C), respectively.
Green color indicates the number of edge pairs that the more frequent edge makes more sense, and
red color indicates the number of edge pairs the less frequent edge makes more sense.

4.5 Applications

In this section, we introduce the application of the selectional preference knowledge contained in

ASER on downstream tasks. First of all, as shown in [182, 185], even with a trivial approach like

string match, such knowledge can be used to answer a subset of the hard commonsense reason-

ing benchmark (winograd schema challenge [72]) with high precision. Besides that, the ASER

knowledge can also help the machines to understand longer documents. For example, as shown

in [184], after converting the ASER knowledge into the ConceptNet format, we can apply that

knowledge on the commonsense reading comprehension task [104] and achieve more significant
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improvement than the original ConceptNet [84]. Last but not least, as the higher-order selectional

preference reflects humans’ understandings about daily life, we can apply them to help understand

the daily dialogue and generate better response. For example, on the daily dialogue dataset [76],

compared with adding the original conceptnet, adding ASER knowledge can double the improve-

ment in terms of the BLEU score. We leave more applications on other natural language processing

and understanding tasks as the future work.
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CHAPTER 5

TRANSFERABILITY FROM SELECTIONAL
PREFERENCE TO COMMONSENSE

KNOWLEDGE

In the last chapter of Part 1, we conduct extensive experiments to demonstrate the selectional pref-

erence knowledge in ASER is indeed the commonsense we want. Commonsense knowledge is

defined as the knowledge that people share but often omit when communicating with each other.

In their seminal work, [84] defined commonsense knowledge as the knowledge “used in a tech-

nical sense to refer to the millions of basic facts and understandings possessed by most people.”

After around 20 years of development, ConceptNet 5.5 [154], built based on the original Con-

ceptNet [84], contains 21 million edges connecting over 8 million nodes. However, most of the

knowledge assertions in ConceptNet 5.5 are still facts about entities integrated from other knowl-

edge sources. The core of ConceptNet, which is inherited from the Open Mind CommonSense

(OMCS) project [84], only contains 600K pieces of high-quality commonsense knowledge in the

format of tuples, e.g., (“song,” UsedFor, “sing”).

In this chapter, we propose to investigate if we can efficiently convert the selectional preference

knowledge in ASER, which is essentially a linguistic graph (i.e., all nodes and edges are defined

with linguistic relations), into commonsense knowledge. Specifically, we develop an algorithm for

discovering patterns from the overlap of existing commonsense and linguistic knowledge bases and

use a commonsense knowledge ranking model to select the highest-quality extracted knowledge.

As a result, we can build TransOMCS, a new commonsense knowledge graph.

5.1 Problem Definition

We start by defining the task of mining commonsense knowledge from linguistic graphs. Given a

seed commonsense knowledge set C (which containsm tuples) and a linguistic graph set G (which

contains n linguistic graphs G) with m� n. Each commonsense fact is in a tuple format (h, r, t)

∈ C, where r ∈ R, the set of human-defined commonsense relations (e.g., “UsedFor,” “CapableOf,”
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Figure 5.1: The overall framework.

“AtLocation,” “MotivatedByGoal”), and h and t are arbitrary phrases. Our objective is to infer a

new commonsense knowledge set C+ (with m+ pieces of commonsense knowledge) from G with

the help of C such thatm+ � m.

5.2 A Knowledge Transformation Framework

The proposed framework is shown in Figure 5.1. In the beginning, for each seed commonsense

tuple (h, r, t) ∈ C, we match and select supporting linguistic graphs that contain all the terms in

h and t, and then extract the linguistic patterns for each commonsense relation with the matched

commonsense tuple and linguistic graph pairs. Next, we use a pattern filtering module to select

the highest quality patterns. Finally, we train a discriminative model to evaluate the quality of the

extracted commonsense knowledge. The details are as follows.

5.2.1 Knowledge Resources

We first introduce the details about the selected commonsense and linguistic knowledge resources.

For the seed commonsense knowledge, we use the English subset of ConceptNet 5.5 [154]. Fol-

lowing conventional approaches [135, 11], we consider only the relations covered by the original

OMCS project [84], except those with vague meanings (i.e., “RelatedTo”) or those well-acquired
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Figure 5.2: Example of linguistic graphs and extracted patterns for different commonsense rela-
tions, which are extracted with the matching of words in seed commonsense tuples and the graphs.
Given a linguistic graph as the input, these patterns can be applied to extract OMCS-like com-
monsense knowledge. Extracted head and tail concepts are indicated with blue and red circles
respectively.

by other knowledge resources (i.e., “IsA”1). In total, 36,954 words, 149,908 concepts, and 207,407

tuples are contained in the selected dataset as C. For the linguistic knowledge resource, we use the

core subset of ASER [185] with 37.9 million linguistic graphs2 to form G.

5.2.2 Pattern Extraction

Given a matched pair of a commonsense tuple (h, r, t) ∈ C and a linguistic graph G ∈ G, the goal

of the pattern extraction module is to find a pattern over linguistic relations such that given r, we

can accurately extract all the words in h and t from G. Here, we formally define each pattern P as

follows:

1The extraction of “IsA” relations belongs to the task of hyponym detection and such knowledge has been well
preserved by knowledge resources like Probase [172].

2As both the internal structure of eventualities and external relations between eventualities could be converted to
commonsense knowledge, we treat all the eventualities and eventuality pairs in ASER as the linguistic graphs.
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Definition 5.2.1 Each pattern P contains three components: head structure ph, tail structure pt,

and internal structure pi. ph and pt are the smallest linguistic sub-graph in G that can cover all

the words in h and t, respectively. pi is shortest path from ph to pt in G.

First, we extract ph and pt fromG to cover all the words in h and t. We take the head pattern as

an example. For each word in h, we first find its position in G. To avoid any ambiguity, if we find

more than one match inG, we discard the current pair and record no pattern. Then, with the position

of the first word in h as the start node, we conduct a breadth-first search (BFS) algorithm over G to

find a sub-structure of G that covers all and only the words in h. If the BFS algorithm finds such

a sub-structure, we treat it as ph, otherwise, we discard this example and return no pattern. We

extract the tail pattern pt with G and t in a similar way. After extracting ph and pt, we then collect

the internal structure pi, which is the shortest path from ph to pt over G. To do so, we collapse

all the nodes and edges in ph and pt into single “head” and “tail” nodes, respectively. Then we

use “head” as the starting node to conduct a new BFS to find the shortest path from node “head” to

“tail.” We aggregate ph, pi, and pt together to generate the overall pattern P. Examples of patterns

are shown in Figure 5.2. For each commonsense relation r, we first collect all the commonsense

tuples of relation r in C to form the subset Cr. Then for each (h, r, t) ∈ Cr, we go over the whole G

to extract matched patterns with the aforementioned algorithm. The time complexity of the overall

algorithm is O(|C| · |G| ·N2), where |C| is the size of C, |G| is the size of G and N is the maximum

number of the nodes in G.

5.2.3 Pattern Selection and Knowledge Extraction

We evaluate the plausibility of pattern P regarding commonsense relation r as follows:

P(P|r) =
F(P|r)∑

P′∈Pr F(P′|r)
, (5.1)

where F(P|r) is the scoring function we use to determine the quality of P regarding r and Pr is the

set of patterns extracted for r. We design F(P|r) as follows:

F(P|r) = C(P|r) · L(P) ·U(P|r), (5.2)

where C(P|r) indicates counts of observing P regarding r, L(P) indicates the length of P to en-

courage complex patterns, andU(P|r) = C(P|r)/
√

|Cr|∑
r′∈R C(P|r

′)/
√

|Cr
′
|
is the uniqueness score of P regarding
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r. We select the patterns with the plausibility score higher than 0.05. On average, 2.8 high confi-

dent patterns are extracted for each relation. After extracting the matched patterns, we then apply

the extracted patterns to the whole linguistic graph set G to extract commonsense knowledge. For

each G ∈ G and each relation r, we go through all the extracted patterns P ∈ Pr. If we can find

a matched P in G, we will then extract the corresponding words of ph and pt in G as the head

words and tail words, respectively. The extracted head and tail word pairs are then considered as a

candidate knowledge, related via r.

5.2.4 Commonsense Knowledge Ranking

To minimize the influence of the pattern noise, we propose a knowledge ranking module to rank all

extracted knowledge based on the confidence. To do so, we first use human annotators to label a

tiny subset of extracted knowledge and then use it to train a classifier. We assign a confidence score

to each extracted knowledge via the learned classifier.

Dataset Preparation

For each commonsense relation type, we randomly select 1,000 tuples3 to annotate. For each

tuple, five annotators from Amazon Mechanical Turk are asked to decide if they think the tuple is

a plausible commonsense statement. If at least four annotators vote for plausibility, we label that

tuple as a positive example. Otherwise, we label it as a negative example. Additionally, we include

all the matched examples from OMCS as positive examples. In total, we obtain 25,923 annotations

for 20 commonsense relations. Among these annotations, 18,221 are positive examples and 7,702

are negative examples. On average, each tuple has 12.7 supporting linguistic graphs. We randomly

select 10% of the dataset as the test set and the rest as the training set.4

Task Definition

The goal of this module is to assign confidence scores to all extracted knowledge so that we can

rank all the knowledge based on their quality. As for each extracted tuple, we may observe multiple

3For relation “DefinedAs” and “LocatedNear,” as our model only extracted 26 and 7 tuples respectively, we annotate
all of them and exclude them when we compute the overall accuracy in Section 5.3.

4As the annotated dataset is slightly imbalanced, when we randomly select the test set, we make sure the number of
positive and negative examples are equal.
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Figure 5.3: Demonstration of the model. The blue and red colors denote the head words and
tail words, respectively. The gray and green colors and indicate the other words and features,
respectively.

supporting linguistic graphs. We model it as a multi-instance learning problem. Formally, we define

the overall annotated knowledge set as K. For each k ∈ K, denote its supporting linguistic graph

set as Gk. We use F(k|Gk) to denote the plausibility scoring function of k given Gk, and it can be

defined as follows:

F(k|Gk) =
1
|Gk|
·
∑
g∈Gk

f(k|g), (5.3)

where |Gk| is the number of graphs in Gk and f(k|g) is the plausibility score of k given g.

Model Details

The proposed model, as shown in Figure 5.3, contains three components: transformer, graph atten-

tion and the final plausibility prediction.

Transformer: We use the transformer module as the basic layer of our model. Formally, assuming

g contains n words w1,w2, ...,wn, we denote the representation of all words after the transformer

module5 as e1, e2, ..., en. In our model, we adopt the architecture of BERT [25] and their pre-trained

5For technical details of the Transformer network, you may refer to the original paper [164].
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Random BERT Proposed model

Accuracy 50% 70.91% 73.23%

Table 5.1: Performance of different plausibility prediction models.

parameters (BERT-base) as the initialization.

Graph Attention: Different from conventional text classification tasks, linguistic relations play a

critical role in our task. Thus in our model, we adopt the graph attention module [165] to encode

the information of these linguistic relations. For each w in g, we denote its representation as ê,

which is defined as follows:

ê =
∑

e′∈N(e)

ae,e′ · e′, (5.4)

where N(e) is the representation set of words that are connected to w and ae,e′ is the attention

weight of e′ regarding e. Here, we define the attention weight as:

ae,e′ =
eNNa([e,e′])∑

ē∈N(e) e
NNa([e,ē]) , (5.5)

where [.] indicates vector concatenation and NNa is the dense neural network we use to predict the

attention weight before the softmax module. After the graph attention module, the representation

of words are then denoted as ê1, ê2, ..., ên.

Plausibility Prediction: In the last part of our model, we first concatenate e and ê together for

all the words and then create head embedding ohead and tail embedding otail using mean pooling

over [e, ê] of all words appear in the head or tail respectively. Besides embedding features, two

important features, graph frequency ofre (how many times this graph appears) and graph type otype
(whether this graph is node or edge), are also considered for the final plausibility prediction. We

define plausibility prediction function f(k|g) as:

f(k|g) = NNp([ohead, otail, ofre, otype]), (5.6)

where NNp is a fully connected layer we use to predict the plausibility. We use the cross-entropy

as the loss function and stochastic gradient descent as the optimization method.
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Model Performance

We train the classifier for different relations separately as some relations are not exclusive with

each other (e.g., “RecievesAction” and “UsedFor”) and test our model on our collected data. We

compare our model with random guess and directly using BERT, which is identical to our model

excluding the graph attention part, in Table 5.1. Experimental results show that both the Trans-

former and the graph attention modules make significant contributions to the prediction quality of

the extracted knowledge.

5.3 Intrinsic Evaluation

5.3.1 Evaluation Metrics

We evaluate different approaches with the following metrics.

Quantity: We first measure quantity of the algorithms. Specifically, we are interested in two

metrics: the number of acquired commonsense knowledge tuples and the number of unique words.

Novelty: For measuring novelty of the outputs, we follow [11] and report the proportion of novel

tuples and concepts, denoted as Novelt and Novelc, respectively. Here “novel,” similar to the

definition in [11], means that one cannot find the whole tuple or concept in the training/development

data via string match. For COMET and LAMA, as the head concept is given as input and thus only

the tail concept is generated by the models, we only select the tail concepts to calculate the concept

novelty.

Quality: We use Amazon Mechanical Turk to evaluate the quality of the acquired commonsense

tuples. For each model, we randomly select 100 tuples from the overall set to test the quality. For

each tuple, five workers are invited to annotate whether this tuple is plausible or not. If at least

four annotators label the tuple as plausible, we then consider it as a plausible tuple. Additionally, to

investigate the quality of tuples with novel concepts, for each model, we also report the performance

of all sampled novel tuples. As we use the accuracy (# valid tuples/ # all tuples) to evaluate the

quality, we denote the overall quality of tuples with novel concepts and the whole tuple set as ACCn

and ACCo, respectively.
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5.3.2 Baseline Methods

We compare TransOMCS with recently developed commonsense knowledge acquisition methods

COMET [11] and LAMA [115], which aim at extracting commonsense knowledge from pre-trained

language models.

1. COMET: Proposed by [11], COMET leverages the pre-trained language model GPT [120] to

learn from annotated resources to generate commonsense knowledge.

2. LAMA: Proposed by [115], LAMA leverages BERT [25] to acquire commonsense knowledge.

Unlike COMET, LAMA is unsupervised.

We denote our method as TransOMCS, indicating that we transfer knowledge from linguistic

patterns to OMCS-style commonsense knowledge.

5.3.3 Implementation Details

For both COMET and LAMA, we include two variants in our experiments. The first one follows

COMET’s paper and uses concept/relation pairs among the most confident subset of OMCS as

input. Due to the small size of this subset (only 1.2K positive examples), even if we use the

10-beam search decoding, we can only generate 12K tuples. To overcome this limitation and test

whether these models can be used for generating large-scale commonsense knowledge, we consider

a different evaluation setting where we randomly select 24K concepts from the concepts extracted

by our approach and then randomly pair the selected concepts with commonsense relations as the

input. We refer to the first and modified settings with Original and Extended subscripts, respectively.

5.3.4 Result Analysis

The summary of model evaluations is listed in Table 5.2. Compared with all baseline methods in

their original settings, TransOMCS outperforms them in quantity. Even the smallest subset (top

1%) of TransOMCS outperforms their largest generation strategy (10-beam search) by ten times.

TransOMCS also outperforms COMET in terms of novelty, especially the percentage of novel

concepts. The reason behind this is that COMET is a pure machine-learning approach and it learns

to generate the tail concept in the training set. It is possible that the stronger their models are, the
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Model # Vocab # Tuple Novelt Novelc ACCn ACCo

COMETOriginal (Greedy decoding) 715 1,200 33.96% 5.27% 58% 90%
COMETOriginal (Beam search - 10 beams) 2,232 12,000 64.95% 27.15% 35% 44%

COMETExtended (Greedy decoding) 3,912 24,000 99.98% 55.56% 34% 47%
COMETExtended (Beam search - 10 beams) 8,108 240,000 99.98% 78.59% 23% 27%

LAMAOriginal (Top 1) 328 1,200 - - - 49%
LAMAOriginal (Top 10) 1,649 12,000 - - - 20%

LAMAExtended (Top 1) 1,443 24,000 - - - 29%
LAMAExtended (Top 10) 5,465 240,000 - - - 10%

TransOMCSOriginal (no ranking) 33,238 533,449 99.53% 89.20% 72% 74%

TransOMCS (Top 1%) 37,517 184,816 95.71% 75.65% 86% 87%
TransOMCS (Top 10%) 56,411 1,848,160 99.55% 92.17% 69% 74%
TransOMCS (Top 30%) 68,438 5,544,482 99.83% 95.22% 67% 69%
TransOMCS (Top 50%) 83,823 9,240,803 99.89% 96.32% 60% 62%

TransOMCS (no ranking) 100,659 18,481,607 99.94% 98.30% 54% 56%

OMCS in ConceptNet 5.0 36,954 207,427 - - - 92%

Table 5.2: Main Results. For our proposed method, we present both the full TransOMCS and sev-
eral subsets based on the plausibility ranking scores. TransOMCSOriginal means the subset, whose
head/relation appear in the test set as used by COMETOriginal and LAMAOriginal. As LAMA
is unsupervised, the Novelty metric is not applicable. For our model, for the fair comparison, we
exclude all annotated knowledge.

more likely they overfit the training data, the fewer novel concepts are generated. As for the quality,

when the training data is similar to the test data, COMET provides the best quality. For example, in

the original setting, the greedy decoding strategy achieves 90% overall accuracy. As a comparison,

the quality of LAMA is less satisfying, which is mainly because LAMA is fully unsupervised.

Besides that, in the extended setting, the quality of both models drops, which is mainly because

the randomly generated pairs could include more rare words. Compared with them, TransOMCS

(top 1%) provides the comparable quality with COMET, but with a larger scale. When the quantity

is comparable, TransOMCS outperforms both of them in terms of quality. We summarize the

comparisons in Table 5.3.

5.3.5 Case Study

We show case studies in Figure 5.4 to further analyze different acquisition methods.

COMET: COMET is the only one that can generate long concepts. At the same time, it also suffers
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Annotation Scale Novelty Quality

OMCS full small high high

COMET supervision large low depends
LAMA no large high low

TransOMCS supervision large high high

Table 5.3: Comparison of different commonsense resources or acquisition methods. The quality
of COMET depends on the scale of its generated knowledge (high quality on the test set, but
low quality on the large scale generation.) COMET and TransOMCS require a small number of
annotations as supervision.

Figure 5.4: Case study of three knowledge acquisition methods. Two head-relation pairs are se-
lected from the original and extended settings respectively. We indicate low quality tuples with
confusing face emojis. For each model, we select the top ten most confident results.

from generating meaningless words. For example, two of the generated concepts end with “be,”

which is confusing and meaningless. This is probably because COMET only generates lemmas

rather than normal words. Besides that, COMET could overfit the training data, even though the

ten outputs are not exactly the same, four of them mean the same thing (“kill others”).

LAMA: The most significant advantage of LAMA is that it is unsupervised. However, it has two

major drawbacks: (1) it can only generate one-token concepts, which is far away from enough for

commonsense knowledge; (2) the quality of LAMA is not as good as the other two methods.

TransOMCS: Compared with COMET, TransOMCS can generate more novel commonsense knowl-

edge. For example, our model knows that “human” is capable of having cells and creating life.

Besides that, unlike LAMA, TransOMCS can generate multi-token concepts. At the same time,

our approach also has two limitations: (1) it cannot extract long concepts, which are difficult to

find an exact pattern match; (2) as the extraction process strictly follows the pattern matching, it

could extract semantic incomplete knowledge. For example, “human” is capable of “have.” The
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Commonsense Knowledge Resource
Reading Comprehension Dialog Generation
Accuracy (%) ∆ (%) BLEU ∆

Base model (no external knowledge resource) 82.90 - 0.54 -

+OMCS 83.11 +0.21 0.72 +0.18

+COMETOriginal (Greedy decoding) 83.12 +0.22 0.61 +0.07
+COMETExtended (Beam search - 10 beams) 83.03 +0.13 0.68 +0.14

+LAMAOriginal (Top 1) 83.13 +0.23 0.56 +0.02
+LAMAExtended (Top 10) 83.17 +0.27 0.57 +0.03

+TransOMCS (Top 1%) 83.27 +0.37 1.85 +1.31

Table 5.4: Experimental results on downstream tasks. For COMET and LAMA, we report the
performance of their most accurate and largest setting. For TransOMCS, as current models cannot
handle large-scale data, we only report the performance of the most confident 1%. All the numbers
are computed based on the average of four different random seeds rather than the best seed as
reported in the original paper.

original linguistic graph should be “human have something”, but as the pattern is “()<-nsubj<-(),”

the object is missing.

5.4 Extrinsic Evaluation

We conduct experiments on two downstream tasks: commonsense reading-comprehension [104]

and dialogue generation [76]. We select [167] and [88, 185] as our base models for the com-

prehension and the generation task, respectively. For the fair comparison, we keep all the model

architecture and parameters the same across different trials. We report the results with the com-

mon metric of each dataset: accuracy on the comprehension task and the BLEU score [108] on the

dialog generation task.

The overall result is shown in Table 5.4. For the reading comprehension task, adding the top

1% of TransOMCS contributes 0.37 overall accuracy, compared to 0.21 contribution of OMCS.

Meanwhile, the contributions of COMET and LAMA are minor for this task. For the dialogue

generation task, TransOMCS shows remarkable improvement in the quality of generated responses.

At the same time, adding other knowledge resources to OMCS does not provide any meaningful

improvements to the performance. The reason behind this could be that COMET and LAMA

provide limited high quality novel commonsense knowledge. For example, the original OMCS on
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average contributes 1.46 supporting tuples6 and TransOMCS contribute another 3.36 supporting

tuples. As a comparison, COMETOriginal, COMETExtended, LAMAOriginal, and LAMAExtended

only provide 0.01, 0.07, 0.49, 0.01 additional tuples respectively. This experiment result shows that

TransOMCS has more novel knowledge.

6Here by supporting tuple, we mean that the head and tail concept appear in the post and response respectively.
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PART 2

COMMONSENSE KNOWLEDGE ACQUISITION

A significant advantage of representing commonsense knowledge in a structured way is that we can

use it as a bridge to connect different modalities. As a result, it would be easier for us to acquire

knowledge (i.e., selectional preference) from different resources. In this part, we present three

different approaches to acquire commonsense knowledge in the format of selectional preference.

Specifically, in Chapter 6, we introduce how to encode words with multiplex word embeddings

such that we can efficiently model different relations among words and use that to predict the se-

lectional preference knowledge. After that, in Chapter 7, we investigate how we can generalize

the knowledge about familiar eventualities to unfamiliar ones with the help of event analogy and

conceptualization. In the end of this part, we discuss how to acquire causal relations between even-

tualities, which is a very important selectional preference relation, from visual signals in Chapter 8.
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CHAPTER 6

SELECTIONAL PREFERENCE ACQUISITION

WITH MULTIPLEX WORD EMBEDDINGS

Representing words as distributed representations (i.e., embeddings) is an important way for ma-

chines to process lexical semantics, which attracts much attention in natural language processing

(NLP) in the past few years [93, 113, 149, 150, 148] with respect to its usefulness in many down-

stream tasks, such as parsing [17], machine translation [190], and coreference resolution [70].

Conventional word embeddings (e.g., word2vec [93] and GloVe [113]) leverage the co-occurrence

information among words to train a unified embedding for each word. Such models are popular

and the resulting embeddings are widely used owing to their effectiveness and simplicity. How-

ever, these embeddings are not helpful for scenarios requiring words functionalizing separately

under different situations, where selectional preference (SP) [169] is a typical scenario.

Conventional SP acquisition methods are either based on counting [130] or complex neural net-

work [24], and the SP knowledge acquired in either way can not be directly leveraged into down-

stream tasks. On the other hand, the information captured by word embeddings can be seamlessly

used in downstream tasks, which makes embedding a potential solution for the aforementioned

problem. However, conventional word embeddings using one unified embedding for each word

are not able to distinguish different relations types (such as various syntactic relations, which is

crucial for SP) among words. For example, such embeddings treat “food” and “eat” as highly

relevant words but never distinguish the function of “food” to be a subject or an object to “eat.”

To address this problem, the dependency-based embedding model [73] is proposed to treat a word

through separate ones, e.g., “food@dobj” and “food@nsubj,” under different syntactic relations,

with the skip-gram [93] model being used to train the final embeddings. However, this method is

limited in two aspects. First, sparseness is introduced because each word is treated as two irrelevant

ones (e.g., “food@dobj” and “food@nsubj”), so that the overall quality of learned embeddings is

affected. Second, the resulting embedding size is too large,1 which is not appropriate either for

storage or usage.

1Assuming one has 200,000 words in the vocabulary and 20 dependency relations, and follow conventional ap-
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Figure 6.1: Illustration of the multiplex embeddings for “sing” and “song.” Black arrows present
center embeddings for words’ overall semantics; blue and green arrows refer to words’ relational
embeddings for relation-dependent semantics. All relational embeddings for each word are de-
signed to near its center embedding. nsubj and dobj relations are used as examples.

Therefore, in this chapter, we propose a multiplex word embedding (MWE) model, which can

be easily extended to various relations between two words. A multiplex network embedding model

was originally proposed for modeling multiple relations among people in a social network [181].

Interestingly, we found it also useful in capturing various relations among different words. An

example is shown in Figure 6.1. “sing” and “song” are highly related to each other with the

“predicate-objective” rather than the “predicate-subject” relation. In our model, each word has

a group of embeddings, including a center embedding representing its general semantics, and sev-

eral embeddings representing their relation-dependent semantics. To ensure that the embeddings

of the same word (under different relations) are similar to each other, we limit the Euclidean norm

of relation-dependent embeddings within a small range, as shown in Figure 6.1. Moreover, consid-

ering that there could be many relations among words, if using a conventional dimension setting

for embeddings to encode relations, the overall embedding size would be too big to be used in

downstream tasks. To deal with it, we propose to use a small dimension for relation-dependent

embeddings and use a transformation matrix for each relation to project them into the same space

of the center embeddings. Thus the two types of embeddings can be jointly trained and the quality

of the relation-dependent ones is guaranteed.

proaches [93, 113] to set the embedding dimension to 300, the resulting embedding size will be about 10 Gigabytes.
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Experiments are conducted on SP acquisition over different dependency relations to evaluate

whether the learned embeddings effectively capture words’ semantics over these relations. In ad-

dition, the word similarity measurement is used to assess how well words’ general semantics are

learned in our model. Both evaluations confirm the superiority of our model, where the SP infor-

mation is effectively preserved and the words’ overall semantics are enhanced. Particularly, further

analysis also indicates that our MWE embeddings are more powerful than all existing embedding

methods in SP acquisition with around 1/20 in their size comparing to previous embeddings [73].

6.1 Multiplex Word Embeddings

6.1.1 Model Overview

As aforementioned, encoding selectional preference information into embeddings can be conducted

by modeling word association patterns under different dependency relations. Similar to [73], the

proposed MWE model also distinguishes different relations among words and learns separate em-

beddings for them on each dependency edge.

Formally, let W be the vocabulary set containing n words w1,w2, ...,wn and R the relations

set containing m relations r1, r2, ..., rm, the proposed model is expected to produce m+ 1 embed-

dings for each word, where there are m relational embeddings representing relations and a center

embedding c for the general semantics. Particularly, each relational embedding has an overall and a

local version, denoted as v and u, where u records the difference between v and c. For both the re-

lational embeddings (v and u) and the center embedding, we use a similar way as that in word2vec

[93] that each one has two variants to represent the semantics of a word w being the head or tail

in different relations. We denote the head and tail embeddings as urh,w ∈ Rs and urt,w ∈ Rs for

the local embeddings of word w under relation type r and cw,h ∈ Rd and cw,t ∈ Rd for the center

embedding, respectively, where s is the dimension for u and d the dimension for c.

Although learning on similar information as that in [73], to reduce the sparseness of introducing

m relational embeddings for each word, we do not treat each word as multiple separate prototypes.

Instead, we use its center embedding to transfer information among different relations and the sum

of the center embedding and a local embedding to represent the final embedding for the correspond-

ing relation.2 Moreover, considering that there are various relations among words, we use a lower
2Conceptually shown in Figure 6.1, to ensure the resulting final embeddings not too far away from the center embed-
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dimension s for storage compression, with s < d. Thus, a transformation matrix X is introduced to

transform u into the same vector space of c. As a result, the final embeddings v for head and tail

of w under relation r are formulated as:

vrh,w = ch,w + Xrh
Turh,w,

vrt,w = ct,w + Xrt
Turt,w.

(6.1)

6.1.2 Learning the MWE model

To train vrh,w and vrt,w for each w under r, we adopt the negative sampling strategy to conduct

the learning process. Specifically, for each r, we use a relation tuple set Tr, with each tuple t =

(wh, r,wt) ∈ Tr, where wh is the head word and wt the tail word. For each t, we randomly

generate two negative tuples by replacingwh andwt with the randomly selected fake headw′h and

tail w′t respectively. Then the learning process is expected to distinguish the positive tuple against

the negative ones. Therefore, formally, we maximize

J =
1
|Tr|

∑
t∈Tr

log
ef(wh,r,wt)

ef(wh,r,wt) + ef(wh,r,w′t) + ef(w
′
h,r,wt)

, (6.2)

over all tuples in Tr for each r, with f(·) evaluating wh and wt being positive samples under r

through

f(wh, r,wt) = vrh,wh

> · vrt,wt
. (6.3)

For each (wh, wt), we use cross entropy as the loss function

E =− logσ(vr
h,wh

> · vr
t,wt

) − logσ(−vr
h,wh

> · vr
t,w′t

)

− logσ(−vr
h,w′h

> · vr
t,wt

),
(6.4)

to measure the learning effect for Eq. (6.2), with σ denoting the sigmoid function.

Combined with Eq. (6.1), the training process is thus to update c, ur, and Xr with the gradients

passed from the loss function using stochastic gradient descent (SGD).

dings, we add restriction to the Euclidean norm of the local relational embeddings.
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Algorithm 3 Multiplex Word Embedding
Input: Relation specific tuple sets T1, . . . ,Tm, d, s, a, and η.
Output: cw, urw, and Xr.

1: Initialize cw, uiw and Xi randomly.
2: for Each Iteration k do
3: Update λ.
4: for Each tuple tp = (wh, r, wt) ∈ Tr do
5: Randomly generate the two negative examples tn1 = (w′h, r, wt) and tn2 = (wh, r, w′t).
6: Ttmp = [tp, tn1, tn2]
7: for t ∈ Ttmp do
8: e(wh,wt) = σ(v′h,wh

T · vit,nt) − tk
9: Update ch,wh

, urh,wh
, Xrh, ct,wt , urt,wt

, and Xrt based on Eqs. (6.5), 6.6), and (6.7).
10: if ‖Xrh

Turh,wh
‖ > a then

11: Update Xrh and urh,wh
.

12: if ‖Xrt
Turt,wt

‖ > a then
13: Update Xrt and urt,wt

.

In detail, take wh as an example, its center embedding ch,wh
is updated by

ch,wh
= ch,wh

− λ · η · ∂E

∂vrh,wh

= ch,wh
− λ · η · e(wh,wt) · vrt,wt

,

(6.5)

where e(wh,wt) = σ(erh,wh

> · ert,wt
) − tk, with tk = 1 if (wh, wt) is positive sample and tk = 0

for negative ones. η is the discounting learning rate. λ is an alternating weight to control the

contribution of the gradient, ranging from 0 to 1.

Moreover, Xr and ur are updated as follows:

ur
h,wh

= ur
h,wh

− (1 − λ) · η · ∂E

∂vr
h,wh

·
∂Xr

hur
h,wh

∂ur
h,wh

= ur
h,wh

− (1 − λ) · η · e(wh,wt) ·Xr
h · vr

t,wt
,

(6.6)

Xr
h = Xr

h − (1 − λ) · η · ∂E

∂vr
h,wh

·
∂Xr

hur
h,wh

∂Xr
h

= Xr
h − (1 − λ) · η · e(wh,wt) · ur

h,wh
· vr

t,wt
,

(6.7)

Meanwhile, ct,wt , urt,wt
, and Xrt are updated in the same way of ch,wh

, urh,wh
, and Xrh following

Eqs. (6.5), (6.6), and (6.7).
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The above learning process is conducted on all m relations at the same time. During the train-

ing, the Euclidean norm of XTu for all embeddings is constrained to have a maximum semantic

drifting range a, whose value controls the distance between the local relational embeddings and

the center embedding. Specifically, if ‖XTu‖ equals to a′, which is greater than a, we scale down

XT and u with
√
a′ · 1

ka , where k is a scaling parameter set to 0.8 throughout this work.

The learning processing is summarized in Algorithm 3. For complexity analysis, it is obvious

drawn that m relation types and n words result in O(mn) and O((d+ s ∗m) ∗ n) for time and

space complexities, respectively.

6.1.3 The Alternating Optimization Strategy

To balance the learning process between the overall semantics and the relation-specific information,

we adopt an alternating optimization strategy3 [9] to adjust λ based on different stage of the training

instead of using a fixed weight for λ. Specifically, considering c is more reliable and possesses more

information while u is learned with shared c, we alternatively update c and u upon the convergence

of c. As a result, we set λ to 1 in the first half of the training process and 0 afterwards.

6.2 Experiments

Experiments are conducted to evaluate how our embeddings are performed on SP acquisition and

word similarity measurement.

6.2.1 Implementation Details

We use the English Wikipedia4 as the training corpus. The Stanford parser5 is used to obtain

dependency relations among words. For the fair comparison, we follow existing work and set

d = 300, s = 10, and a = 1. Following [62] and [24], we select three dependency relations (nsubj,

dobj, and amod) as follows:

3Alternating optimization was originally proposed to train different parameters in a sequential manner and applied in
various areas.

4https://dumps.wikipedia.org/enwiki/
5https://stanfordnlp.github.io/CoreNLP/
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• nsubj: The preference of subject for a given verb. For example, it is plausible to say “dog barks”

rather than “stone barks.” The verb is viewed as the predicate (head) while the subject as the

argument (tail).

• dobj: The preference of object for a given verb. For example, it is plausible for “eat food” rather

than “eat house.” The verb is viewed as the predicate (head) while the object as the argument

(tail).

• amod: The preference of modifier for a given noun. For example, it is plausible to say “fresh

air” rather than “solid air.” The noun is viewed as the predicate (head) while the adjective as the

argument (tail).

6.2.2 Baselines

We first compare the proposed multiplex embedding with the following embedding models. As it is

trivial to apply these embedding models in downstream tasks, we label these models as downstream

friendly.

• word2vec, the embedding model proposed by [93]. We use the skip-gram model for this base-

line.

• GloVe [113], learning word embeddings by matrix decomposition on word co-occurrences.

• D-embeddings, the model proposed by [73] uses a skip-gram framework to encode dependencies

into embeddings with multi-prototypes of words.

To investigate whether the SP knowledge can be captured by the pretrained contextualized word

embedding models, we also treat following pre-trained models as baselines.

• ELMo [114], a pretrained language model with contextual awareness. We use its static repre-

sentations of words as the word embedding.

• BERT [25], a pretrained bi-directional contextualized word embedding model with state-of-the-

art performance on many NLP tasks.
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Besides those embedding methods, we also compare with following conventional SP acqui-

sition methods to demonstrate the effectiveness of the proposed multiplex embedding model, as

it is still unclear how to leverage these methods in downstream tasks, we label these methods as

downstream unfriendly.

• Posterior Probability (PP) [130], a counting based method for the selectional preference acqui-

sition task.

• Distributional Similarity (DS) [36], a method that uses the similarity of the embedding of the

target argument and average embedding of observed golden arguments in the corpus to predict

the preference strength.

• Neural Network (NN) [24], an NN-based method for the SP acquisition task. This model

achieves the state-of-the-art performance on the pseudo-disambiguation task.

For word2Vec and GloVe, we use their released code. For D-embedding, we follow their orig-

inal paper using the Gensim package.6 The dimensions of the aforementioned embeddings are set

to 300 according to their original settings. For ELMo and BERT, we use their pre-trained models.

As BERT was not originally designed for word level semantics tasks, for the selectional preference

acquisition task, we compare with two variations of the original BERT model: (1) BERT (static),

which extracts static embedding from the BERT model in a similar way as that from the ELMo

model; (2) BERT (dynamic), which takes a pair of words as input and produces a plausibility score

for that pairs of words. The main difference between the static and dynamic version of BERT is

that in the dynamic version, the contextual information can be fully utilized, which is more similar

to the training objective of BERT.

6.2.3 Selectional Preference Acquisition

The first task in our experiment is SP acquisition. Currently, there are two methods that we can

use to evaluate the quality of extracted SP knowledge: Pseudo-disambiguation [132] and human

labeled datasets [91, 62]. However, as shown in [182], pseudo-disambiguation selects positive

SP tuples from the corpus and generate negative SP tuples by randomly replacing the head/tail.

As a result, pseudo-disambiguation only evaluates how good the model fits the corpus rather than

6https://radimrehurek.com/gensim/models/word2vec.html
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SP Evaluation Set #W #P

Keller [62] 571 360
SP-10K [182] 2,500 6,000

Table 6.1: Statistics of Human-labeled SP Evaluation Sets. #W and #P indicate the numbers of
words and pairs, respectively. As different datasets have different SP relations, we only report
statistics about “nsubj,” “dobj,” and “amod” (if available).

evaluating the SP acquisition models based on ground truth. Thus, in this section, we evaluate

different SP acquisition methods with ground truth (human labeled datasets). Two representative

datasets, Keller [62] and SP-10K [182], are selected as the benchmark datasets.

In each dataset, for each SP relation, various word pairs are provided. For each of the word

pairs, the datasets also provide the annotated plausibility score of how likely a preference exists

between that word pair under the corresponding SP relation. Thus the job for all the models is

to predict the plausibility score for all word pairs under different SP relation settings. After that,

we follow the conventional setting that uses the Spearman’s correlation to assess the correspon-

dence between the predicted plausibility scores and human annotations on all word pairs for all SP

relations. The statistics of these datasets are shown in Table 6.1.

For embedding based methods (word2vec, GloVe, D-embedding7, and MWE8), we follow pre-

vious work [93, 73] and use the cosine similarity between embeddings of head and tail words to

predict their relations. For conventional SP acquisition methods (PP, DS, and NN), we follow their

original paper to compute the plausibility scores.

The experimental results are shown in Table 6.2. As Keller is created based on the PP distri-

bution and have relatively small size while SP-10K is created based on random sampling and has

a much larger size, we treat the performance on SP-10K as the major evaluation. Our embeddings

significantly outperform other baselines, especially embedding based baselines. The only exception

is PP on the Keller dataset due to its biased distribution. In addition, there are other interesting ob-

servations. First, compared with “dobj” and “nsubj,” “amod” is simpler for word2vec and GloVe.

The reason behind is that conventional embeddings only capture the co-occurrence information,

7For D-embedding, since it provides embeddings for different relations (e.g., “food@nsubj” and “food@dobj”), we
follow their work and directly use embeddings over certain relations to predict the score for the tested pairs. For
example, given the test tuple (“eat,” dobj, “food”), we compute the cosine similarity of “eat” and “food@dobj” rather
than “food@subj.”

8For the proposed model MWE, we use the cosine similarity between vh,wh
and vt,wt as the predicted plausibility.
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Model Downstream
Keller SP-10K

dobj amod average nsubj dobj amod average

word2vec Friendly 0.29 0.28 0.29 0.32 0.53 0.62 0.49
GloVe Friendly 0.37 0.32 0.35 0.57 0.60 0.68 0.62
D-embeddings Friendly 0.19 0.22 0.21 0.66 0.71 0.77 0.71

ELMo Friendly 0.23 0.06 0.15 0.09 0.29 0.38 0.25
BERT (static) Friendly 0.11 0.05 0.08 0.25 0.32 0.27 0.28
BERT (dynamic) Friendly 0.19 0.23 0.21 0.35 0.45 0.51 0.41

PP Unfriendly 0.66 0.26 0.46 0.75 0.74 0.75 0.75
DS Unfriendly 0.53 0.32 0.43 0.59 0.65 0.67 0.64
NN Unfriendly 0.16 0.13 0.15 0.70 0.68 0.68 0.69

MWE Friendly 0.63 0.43† 0.53† 0.76 0.79† 0.78 0.78†

Table 6.2: Results on different SP acquisition evaluation sets. As Keller is created based on the PP distribu-
tion and has relatively small size while SP-10K is created based on random sampling and has a much larger
size, we treat the performance on SP-10K as the main evaluation metric. Spearman’s correlation between
predicated plausibility and annotations are reported. The best performing models are denoted with bold font.
† indicates statistical significant (p <0.005) overall baseline methods.

which is enough to predict the selectional preference of “amod” rather than “nsubj” or “dobj.”9

Second, even though large-scale contextualized word embedding models like ELMo and BERT

have been proved useful in many other tasks, they are still limited in learning specific and detailed

semantics and thus perform inferior to our model in the SP acquisition task. For Example, ELMo

and BERT can know that there is a strong semantic connection between “eat” and “food,” but they

do not know whether “food” is a plausible subject or object of “eat.” Third, surprisingly, although

NN achieves the state-of-the-art performance on the pseudo-disambiguation task, its performance

is not satisfying against human annotation, especially on Keller, which is probably because the NN

model overfits the training data, whose distribution is different from human SP knowledge.

6.2.4 Word Similarity Measurement

In addition to SP acquisition, we also evaluate our embeddings on word similarity (WS) measure-

ment to test whether the learned embedding can effectively capture the overall semantics. We use

SimLex-999 [52] as the evaluation dataset for this task because it contains different word types,

i.e., 666 noun pairs, 222 verb pairs, and 111 adjective pairs. We follow the conventional setting

9The only possible SP relation between nouns and adjectives is “amod,” while multiple SP relations could exist
between nouns and verbs, and co_occurrence information cannot effectively distinguish them.
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Model WS Dimension Training Time

ELMo 0.434 512 ≈40
BERT 0.486 768 ≈300

MWE 0.476 300 4.17

Table 6.3: Comparison of MWE against language models on the WS task. Overall performance, embedding
dimension, and training time (days) on a single GPU are reported.

that uses the Spearman’s correlation to assess the correspondence between the similarity scores and

human annotations on all word pairs. Evaluations are conducted on the final embeddings v for each

relation and the center ones.

Results are reported in Table 6.4 with several observations. First, our model achieves the best

overall performance and significantly better on nouns, which can be explained by that nouns appear

in all three relations while most of the verbs and adjectives only appear in one or two relations. This

result is promising since it is analyzed by [147] that two-thirds of the frequent words are nouns; thus

there are potential benefits if our embeddings are used in downstream NLP tasks. Second, the center

embeddings achieve the best performance against all the other relation-dependent embeddings,

which demonstrates the effectiveness of our model in learning relation-dependent information over

words and also enhancing their overall semantics.

We also compare MWE with pre-trained contextualized word embedding models in Table 6.3

for this task, with overall performance, embedding dimensions, and training times reported. It

is observed that that MWE outperforms ELMo and achieves comparable results with BERT with

smaller embedding dimension and much less training complexities.

6.3 Analysis

With the experiments on SP acquisition and word similarity measurement, we conduct further

analysis for different settings for hyper-parameters and learning strategies, as well as the scalability

of our model.
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Model noun verb adjective overall

word2vec 0.41 0.28 0.44 0.38
Glove 0.40 0.22 0.53 0.37

D-embedding 0.41 0.27 0.38 0.36

nsubj

h 0.46 0.29 0.54 0.43
t 0.45 0.25 0.48 0.40

h+t 0.44 0.23 0.50 0.40
[h,t] 0.47 0.27 0.51 0.42

dobj

h 0.46 0.27 0.45 0.41
t 0.45 0.23 0.46 0.40

h+t 0.45 0.20 0.45 0.38
[h,t] 0.46 0.25 0.48 0.42

amod

h 0.47 0.25 0.52 0.37
t 0.46 0.24 0.50 0.38

h+t 0.46 0.24 0.52 0.38
[h,t] 0.47 0.26 0.52 0.38

center

h 0.51 0.33 0.57 0.48
t 0.51 0.30 0.56 0.47

h+t 0.52 0.31 0.54 0.46
[h,t] 0.51 0.32 0.57 0.48

Table 6.4: Spearman’s correlation of different embeddings for the WS measurement. “nsubj,” “dobj,”
“amod” represents the embeddings of the corresponding relation and “center” indicates the center embed-
dings. h, t, h+t, and [h,t] refer to the head, tail, sum of two embeddings, and the concatenation of them,
respectively. The best scores are marked in bold fonts.

6.3.1 Effect of the Local Embedding Dimension

We investigating the performance of MWE on SPA (SP acquisition) and WS tasks with different s.

As shown in Figure 6.2, the performance of our model is in an increasing trend when we increase

the value of s. When the dimension reaches 10, the performance almost reaches the top, which

confirms that the local relational embeddings can be effective in small dimensions (about 1/30 of

the center dimension) when using center embeddings as the constraint.

6.3.2 Effect of the Semantic Drifting Range

Similar to s, we also investigate the model performance with the influence of different constraint a.

It is observed in Figure 6.3 that, the constraint gets looser with the increase of a. For SP acquisition,

in a small range, the model performance gradually improves along with the increasing value of

86



Figure 6.2: Effect of the different s on SP acquisition (SP-10K) and WS tasks.

Figure 6.3: Effect of different a on SP acquisition (SP-10K) and WS tasks.

a because these embeddings are more flexible to capture intense relation-dependent information.

However, once the range passes a threshold (1 in our experiment), the embeddings get farther away

from their general semantics and start to overfit, which is also observed in the WS experiment, and

thus the performance drops monotonically.

6.3.3 Effect of Alternating Optimization

An analysis is also conducted to demonstrate the effectiveness of the alternating optimization strat-

egy. As shown in Table 6.5, we compare our model with several different strategies. The first one
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Training Strategy Averaged SPA Overall WS

λ = 1 0.762 0.476
λ = 0 0.073 0.018
λ = 0.5 0.493 0.323

Alternating optimization 0.775 0.476

Table 6.5: Comparisons of different training strategies.

is to put all weights to the center embedding (fix λ to 1), which never updates the local relational

embeddings. As a result, it can achieve similar performance on word similarity measurement but

is inferior in SP acquisition because no relation-dependent information is preserved. The second

strategy is to put all weights to the local relational embeddings (fix λ to 0). In this case, it performs

very poor owing to the loss of general semantics. Last but not least, the alternating optimization

also outperforms the setting with a fixed λ = 0.5, which can be explained by alternating optimiza-

tion can first get a good overall semantic representation and then acquire the SP knowledge on

top of that. To summarize, the alternating optimization provides an effective solution to training

our model with a smart process in adjusting the contribution of different embeddings as well as

stabilizing their optimization.

6.3.4 Scalability

Scalability of embeddings is an important factor in real applications. Practically, GPU or similar

computation support is required to accommodate embeddings to applying neural models. Normally,

the current most affordable GPUs typically have a memory size limitation around 10 GB. Thus, to

ensure the learned embeddings can be used in downstream tasks, their size becomes an important

concern when evaluating different embedding models, especially when there exist many different

relations between words in our model.

Assuming that there are 20 relations among words, the size of all embedding models with

the increasing word numbers in Figure 6.4. word2Vec and GloVe have the smallest size because

they only train one embedding for each word while sacrificing the relation-dependent information

among them. As a comparison, D-embeddings are trained on multiple prototypes for each word

to record relation information, thus their size dramatically explodes with the increasing of the

vocabulary. Consequently, it is easily computed for D-embeddings that 200,000 words will result
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Figure 6.4: Scalability on embedding size against number of words.

in a 10GB model, which is unfeasible to be used in downstream tasks. Effectively with the small

dimension for our local relational embeddings, relation information can be preserved in a small-

sized model, which shows a compatible space requirement with the conventional embeddings.

Experiments on SP acquisition and word similarity measurement illustrated that our model

better encodes SP knowledge than different baselines without harming its capability in representing

general semantics. Analysis is also conducted with respect to different settings and optimization

strategies, as well as the effect of model size, which further illustrates the validity and effectiveness

of the proposed model and its learning process.
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CHAPTER 7

COMMONSENSE GENERALIZATION WITH
ANALOGY AND CONCEPTUALIZATION

In Chapter 4, we introduced a linguistic pattern-based approach that can effectively extract even-

tuality knowledge from the unlabeled corpus. However, through that way, we still cannot cover

all the eventuality knowledge in the world because many eventualities may not be mentioned in

all the literature we have at all. Such a sparsity problem brings a huge challenge for machines to

understand those rare eventualities. However, humans would not suffer from this. For example,

we can know that tigers can eat chicken without seeing it by ourselves or being told by others.

An important reason behind this is that humans can effectively generalize their knowledge from

familiar eventualities to unfamiliar but analogous ones with the help of conceptualization and con-

ceptualization. For example, assume that we have not seen a tiger eats a chicken, but we know

it can eat other small animals such as duck, and we know that both chicken and duck belongs to

small animals, it is reasonable for us to guess that a tiger might be able to eat a chicken. Motivated

by this, in this chapter, we investigate how we can mimic humans and generalize the knowledge

about familiar eventualities to unfamiliar ones with the help of analogy and conceptualization. As

compared with states, events are more complex because they are describing a change of states and

typically involve multiple steps. We focus on events in this chapter.

Understanding events has long been a challenging task in NLP, to which many efforts have

been devoted by the community. However, most existing works are focusing on procedural (or

horizontal) event prediction tasks. Examples include predicting the next event given an observed

event sequence [122] and identifying the effect of a biological process (i.e., a sequence of events)

on involved entities [8]. These tasks mostly focus on predicting related events in a procedure based

on their statistical correlations in previously observed text. As a result, understanding the meaning

of an event might not be crucial for these horizontal tasks. For example, simply selecting the most

frequently co-occurring event can offer acceptable performance on the event prediction task [44].

Computational and cognitive studies [140, 177] suggest that inducing and utilizing the hierar-
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Figure 7.1: An illustration of leveraging known processes to predict the sub-event sequence of a
new process.

chical structure1 of events is a crucial component of how humans understand new events and can

help many aforementioned horizontal event prediction tasks. Consider the example in Figure 7.1.

Assume that one has never bought a house but is familiar with how to “buy a car” and “rent a

house;” referring to analogous steps in these two relevant processes would still provide guidance

for the target process of “buy a house.” Motivated by this hypothesis, we try to directly evaluate

a model’s event understanding ability. We define this as the ability to identify vertical relations,

that is, to predict the sub-event sequence of a new process.2 We require models to generate the

sub-event sequence for a previously unobserved process given observed processes along with their

sub-event sequences, which we refer to as “the observed process graphs” in the rest of this chap-

ter. This task is more challenging than “conventional” event predictions tasks, since it requires the

generation of a sub-event sequence given a new, previously unobserved, process definition.

To address this problem, we propose an Analogous Process Structure Induction (APSI) frame-

work. Given a new process definition (e.g., “buy a house”), we first decompose it into two di-

mensions: predicate and argument. For each of these, we collect a group of processes that share

the same predicate (i.e., “buy-ARG”) or same argument (i.e., “PRE-house”), and then induce an

1The original paper refers to the knowledge about processes and their sub-events as event schemata.
2A process is a more coarse-grained event by itself. In this chapter, we use this term to distinguish it from sub-events.
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Figure 7.2: Demonstration of the proposed APSI framework. Given a target process P, we first
decompose its semantics into two dimensions (i.e., predicate and argument) by grouping processes
that share a predicate or an argument. For each such group of processes, we then leverage the
observed process graphs G to generate an abstract and probabilistic representation for their sub-
event sequences. In the last step, we merge them with an instantiation module to produce the
sub-event sequence of P.

abstract and probabilistic sub-event representation for each group. Our underlying assumption is

that processes that share the same predicate or argument could be analogous to each other, and thus

could share similar sub-event structures. Finally, we merge these two abstract representations, us-

ing an instantiation module, to predict the sub-event structure of the target process. By doing so, we

only need a small number of analogous processes (as we show, 20, on average) to generate unseen

sub-events for the target process. Intrinsic and extrinsic evaluations show that APSI outperforms all

baseline methods and can generate meaningful sub-event sequences for unseen processes, which

are proven to be helpful for predicting missing events.

The rest of the chapter is organized as follows. Section 7.1 introduces the Analogous Process

structure induction (APSI) framework. Section 7.2 describes our intrinsic and extrinsic evaluation,

demonstrating the effectiveness of APSI and the quality of the induced process knowledge.

7.1 The APSI Framework

Figure 7.2 illustrates the details of the proposed APSI framework. Given an unseen process P, a

target sub-event sequence length k, and a set of observed process graphs G, the task is to predict a
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Figure 7.3: Examples of Sub-Event Representations.

k-step sub-event sequence [E′1,E′2, ...,E′k] for P. Each process graph G ∈ G in the input contains

a process definition PG and an n-step temporally ordered sub-event sequence [EG1 ,EG2 , ...,EGn ].

We assume that each process P is described as a combination of a predicate and an argument (e.g.,

“buy+house”) and each sub-event E ∈ E is given as verb-centric dependency graph as used in [185]

(see examples in Figure 7.3). In APSI, we decompose the target process into two dimensions (i.e.,

predicate and argument). For each target process, we collect a group of observed process graphs

that share either the predicate or the argument with the target process; we assume that processes in

these groups have sufficient information for predicting the structure of the target process. We then

leverage an event conceptualization module to induce an abstract representation of each process

group. Finally, we merge the two abstract, probabilistic representations and instantiate it to generate

a ground sub-event sequence as the final prediction. Detailed descriptions of APSI components are

introduced as follows.

7.1.1 Semantic Decomposition

Each process definition P is given as a predicate and its argument, which we term below the two

“dimensions” of the process definition. We then collect all process graphs in G that have the same

predicate as P into Gp and those that have the same argument into Ga. We assume that these two

sets provide the information needed to generate an abstract process representation that would guide

the instantiation of the event steps for P.
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7.1.2 Semantic Abstraction

The goal of the semantic abstraction step is to acquire abstract representations Sp and Sa for Gp and

Ga, respectively, to help transfer the knowledge from the grounded observed processes to the target

new process. To do so, we first need to conceptualize observed sub-events in Gp and Ga (e.g., “eat

an apple”) to a more abstract level (e.g., “eat fruit”). Clearly, each event could be conceptualized to

multiple abstract events. For example, “eat an apple” can be conceptualized to “eat fruit” but also

to “eat food,” and the challenge is to determine the appropriate level of abstraction. On one hand,

the conceptualized event cannot be too general, as we do not want to lose touch with the original

event, and, on the other hand, if it is too specific, we will not aggregate enough instances of sub-

events into it, thus we will have difficulties transferring knowledge to the new unseen process.

To automatically achieve the balance between these conflicting requirements and select the best

abstract event for each observed sub-event, we model it as a weighted mutually exclusive set cover

problem [86] and propose an efficient algorithm, described below, to solve it. We then merge the

repeated conceptualized events and determine their relative positions.

Modeling Event Conceptualization

For each event E, we first identify all potential events that it can be conceptualized to. If two sub-

events E1 and E2 can be conceptualized to the same event C, we place E1 and E2 into the set EC.

To qualitatively guide the abstraction process we introduce below a notion of semantic loss that

we incur as we move up to more abstract representations. To measure the semantic loss during the

conceptualization, we assign weight to each set:

W(EC) =
1∑

E∈EC F(E,C)
, (7.1)

where F(E,C) is a scoring function, defined below in Eq. 7.2, that captures the amount of “semantic

details” preserved due to abstracting from E to C. With this definition, the event conceptualization

problem can be formalized as finding exclusive3 sets (such as C) that cover all observed events

with minimum total weight. In the rest of this section, we first introduce how to collect potential

conceptualized events for each E, how we define F, and how we solve this discrete optimization

problem.

3No sub-event can appear in two selected sets.
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Identifying Potential Conceptualizations Assume that sub-event E containsmwordswE1 ,wE2 , ...,wEm,

each corresponds to a node in Figure 7.3; for each of these, we can retrieve a list of hypernym paths

from WordNet [94]. For example, given the word “house,” WordNet returns two hypernym paths:4

(1) “house”→“building”→“structure”→...; (2) “house”→“firm”→“business”→.... As a result, we

can find
∏
w∈E L(w) potential conceptualized events for E, where L(w) is the number of w’s hy-

pernyms. We denote the potential conceptualized event set for E as CE and the overall set as C.

Conceptualization Scoring As mentioned above, for each pair of a sub-event E and its potential

conceptualization C, we propose a scoring function F(E,C) to measure how much “semantic infor-

mation” is preserved after the conceptualization. Motivated by Budanitsky and Hirst [13] and based

on the assumption that the more abstract the conceptualized event is, the more semantic details are

lost, we define F(E,C) to be:

F(E,C) =
m∏
i=1

wD(wE
i ,wC

i ), (7.2)

whereD(wEi ,wCi ) is the depth fromwEi towCi on the taxonomy path, andw is a hyper-parameter5

measuring how much “semantics” is preserved following each step of the conceptualization.

Conceptualization Assignment Now we are able to model the procedure of finding proper con-

ceptualized events as a weighted mutually exclusive set cover problem. Note that this is an NP-

complete problem and requires a prohibitive computational cost to obtain the optimum solution [59].

To obtain an efficient solution that is empirically sufficient for assigning conceptualized events with

reasonable amount of instances, we develop a greedy procedure as described in Algorithm 4. For

each retrieved process graph set Gp or Ga, we collect all its sub-events as E and use it as the input

for the conceptualization algorithm. In each iteration, we first compute the conceptualization score

F for all the (E, C) pairs and then compute the weight score for all conceptualization sets EC. After

selecting the set with minimum weight, ECmin
, we remove all the events covered by it from E and

repeat the process until no event is left. After the conceptualization, we merge sub-events that are

conceptualized to the same event and represent them with the resulting conceptualized event C,

whose weight is defined to be W(C) = 1
W(EC) . Compared with the naive algorithm, which first

expands all possible subsets (i.e., it includes all subsets of EC for all C) and then leverages the sort

and filter technique to select the final subsets, we reduce the time complexity from O(|C| · |E|2) to

4We omit the synset number for clear representation.
5In practice, we use two separate hyper-parameters wv and wn for verbs and nouns, respectively.
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Algorithm 4 Event Conceptualization
INPUT: Set of events E. Each E ∈ E is associated with a set of potential conceptualization events
CE. The overall conceptualized event set C.
OUTPUT: Partition of n event subsets P = {E1,E2, ...,En}, where each subset Ei corresponds to a
unique conceptualized event Ci.

1: Initialize event partition set P := ∅.
2: while E 6= ∅ do
3: for Each E ∈ E do
4: for Each C ∈ CE do
5: EC := ∅.
6: Compute F(E,C) using Eq. (7.2).
7: for Each C ∈ C do
8: for Each E ∈ E do
9: if C ∈ CE then

10: EC := EC ∪ {E}.
11: ComputeW(EC) using Eq. (7.1).
12: Select ECmin

with the minimumW score.
13: E := E \ ECmin

14: P := P∪ {ECmin
}.

15: Return P.

O(n · |C| · |E|), where n is the number of conceptualized events and is typically much smaller than

|E|.

Conceptualized Event Ordering

After conceptualizing and merging all sub-events, we need to determine their loosely temporal

order (e.g., whether they typically appear at the beginning or the end of these sub-event sequences).

Let the set of selected conceptualized events be C∗. For each C ∈ C∗, we define its order score

T(C), indicating how likely C is to appear first, as:

T(C) =
∑

C′∈C∗
θ(

∑
EC∈EC

∑
EC′∈EC′

t(EC,EC′) − t(EC′ ,EC)), (7.3)

where θ is the unit step function and t(EC,EC′) represents how many times EC appears before EC′

in an observed process graph.

7.1.3 Sub-event Sequence Prediction

In the last step, we leverage the two abstract representations we got for the predicate and argument

of the target process definition to predict its final sub-events. To do so, we propose the following
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instantiation procedure. We are given the abstract representations Sp and Sa, for the predicate and

argument, respectively. Each is a set of conceptualized events associated with weights and order

scores. For each conceptualized event Cp ∈ Sp, using each event Ca ∈ Sa, we can generate a new

instantiated event Ĉp. For example, if Cp is “cut fruit” and Ca is “buy an apple,” then our model

would create the new event “cut an apple.” Specifically, for each w ∈ Cp, if we can find a word ŵ

such that ŵ is a hyponym ofw, we will replacew with ŵ and repeat this process until no hyponym

can be detected in Cp. We denote the generated event by Ĉp. To account for the semantic loss

during the instantiation procedure, we define the weight and order score of Ĉp as follows:

Ŵ(Ĉp) =W(Cp) · F(Ĉp,Cp) ·
∑

C′a∈Sa
W(C′a)

W(Ca)
(7.4)

T̂(Êp) = T(Cp) · F(Ĉp,Cp) ·
∑

C′a∈Sa
W(C′a)

W(Ca)
, (7.5)

Similarly, we apply the same procedure to Ca with Cp, and denote the resulted event Ĉa. We then

repeatedly merge instantiated events by summing up their weights and averaging their order scores.

In the end, we select top k sub-events based on the weights and sort them based on the order score

as the sub-event sequence prediction.

7.2 Experiments

In this section, we conduct intrinsic and extrinsic evaluations to show that APSI can generate mean-

ingful sub-event sequences for unseen processes, which can help predict the missing events.

7.2.1 Dataset

We collect process graphs from the WikiHow website.6 [66] In WikiHow, each process is associated

with a sequence of temporally ordered human-created steps. For each step, as shown in Figure 7.3,

we use the tool released by ASER [185] to extract events and construct the process graphs. We

select all processes, where each step has one and only one event, and randomly split them into

the train and test data. As a result, we got 13,501 training process graphs and 1,316 test process

graphs,7 whose average sub-event sequence length is 3.56.

6https://www.wikihow.com.
7We do not need a development set because the proposed solution APSI is not a learning-based method.
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7.2.2 Baseline Methods

We compare with the following baseline methods:

Sequence to sequence (Seq2seq): One intuitive solution to the sub-event sequence prediction task

would be modeling it as a sequence to sequence problem, where the process is treated as the input

and the sub-event sequence the output. Here we adopt the standard GRU-based encoder-decoder

framework [158] as the base framework and change the generation unit from words to events. For

each process or sub-event, we leverage pre-trained word embeddings (i.e., GloVe-6b-300d [113])

or language models (i.e., RoBERTa-base [85]) as the representation, which are denoted as Seq2seq

(GloVe) and Seq2seq (RoBERTa).

Top One Similar Process: Another baseline is the “top one similar process.” For each new process,

we can always find the most similar observed process. Then we can use the sub-event sequence

of the observed process as the prediction. We employ different methods (i.e., token-level Jaccard

coefficient or cosine similarity of GloVe/RoBERTa process representations) to measure the pro-

cess similarity. We denote them as Top one similar process (Jaccard), (GloVe), and (RoBERTa),

respectively.

For each process, we also present a randomly generated sequence and a human-generated se-

quence8 as the lower-bound and upper-bound for sub-event sequence prediction models.

7.2.3 Intrinsic Evaluation

We first present the intrinsic evaluation to show the quality of the predicted sub-event sequences of

unseen processes. For each test process, we provide the process name and the sub-event sequence

length9 to evaluated systems and ask them to generate a fixed-length sub-event sequence.

Evaluation Metric

Motivated by the ROUGE score [81], we propose an event-based ROUGE (E-ROUGE) to evaluate

the quality of the predicted sub-event sequence. Specifically, similar to ROUGE, which evaluates

the generation quality based on N-gram token occurrence, we evaluate how much percentage of

8The human-generated sequence is randomly selected from the WikiHow and excluded during the evaluation.
9We select the majority length of all references.
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the sub-event and time-ordered sub-event pairs in the induced sequence is covered by the human-

provided references. We denote the evaluation over single event and event pairs as E-ROUGE1

and E-ROUGE2, respectively. We also provide two covering standards to better understand the

prediction quality: (1) “String Match”: all words in the predicted event/pairs must be the same

as the referent event/pairs; (2) “Hypernym Allowed”: the predicted and referent event must have

the same dependency structure, and for the words on the same graph position, they should be

the hypernym of or same as each other. For example, if the referent event is “eat apple” and the

predicted event is “eat fruit”, we still count it as a match. The “String Match” setting is stricter, but

the “Hypernym Allowed” setting also has its unique value to help better understand if our system

is predicting relevant sub-events.

Implementation Details

In terms of training, we set both wv and wn to be 0.5 for our model. For the seq2seq baselines, we

set the learning rate to be 0.001 and train the models until they converge on the training data. All

other hyper-parameters following the original paper. In terms of the evaluation, we also provide

two settings. (1) Basic: we follow previous works [40] to predict and evaluate events based on

verbs; (2) Advanced: we predict and evaluate events based on all words.

Result Analysis

We show the results in Table 7.1. In general, there is still a notable gap between current mod-

els’ performance and human performance, but the proposed APSI framework can indeed generate

sufficiently relevant sub-events. For example, if we only consider the verb. Even in the string

match setting, 14.8% of the predicted event and 6.6% of the ordered event pairs are covered by

the references, which is much better than the random guess and nearly half of the performance of

human beings. If hypernym is allowed, 36% and 19% of the predicted event and event pairs are

covered. Besides that, if we take all words in the event into consideration, the task becomes more

challenging. Specifically, even human can only achieve 11.63 E-ROUGE1 and 5.59 E-ROUGE2,

which suggests that low scores achieved by current models are probably due to the limitation of

the current dataset (e.g., on average, we only have 1.7 references for each test process). If more

references are provided, the performance of all models will also increase. In the rest of the intrinsic
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(a) Basic Setting (for each sub-event, we only predict and evaluate the verb)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2

Random 2.9165 0.4664 23.5873 8.1089

Seq2seq (GloVe) 5.0323 1.4965 27.8710 13.0946
Seq2seq (RoBERTa) 4.5455 0.4831 28.0032 12.8502

Top one similar process (Jaccard) 8.8589 5.1000 28.6548 14.6231
Top one similar process (GloVe) 9.8797 5.1452 29.4203 13.6001
Top one similar process (RoBERTa) 9.2599 4.7390 30.6599 15.8417

Analogous Process Structure Induction (APSI) 14.8013 6.6045 36.1648 19.2418

Human 29.0189 15.2542 50.4647 29.4423

(b) Advanced Setting (for each sub-event, we predict and evaluate all words)

Model
String Match Hypernym Allowed

E-ROUGE1 E-ROUGE2 E-ROUGE1 E-ROUGE2

Random 0.0000 0.0000 0.5104 0.0903

Seq2seq (GloVe) 0.1935 0.0534 0.9677 0.1069
Seq2seq (RoBERTa) 0.4870 0.0000 1.7857 0.2899

Top one similar process (Jaccard) 0.6562 0.2257 2.4797 0.5867
Top one similar process (GloVe) 0.8750 0.2106 2.8801 0.7372
Top one similar process (RoBERTa) 0.9479 0.3009 3.2811 0.9929

Analogous Process Structure Induction (APSI) 3.4988 0.4513 6.1611 1.1885

Human 11.6351 5.5905 18.0034 8.2695

Table 7.1: Intrinsic evaluation results of the induced process structures. On average, we have 1.7
human-generated sub-event sequences as the references for each test process. Best performing
models are marked with the bold font.

evaluation, we present more detailed analysis based on the advanced setting (string match) and a

case study to help better understand the performance of APSI.

Effect of the Instantiation Module

A key step in our framework is how to leverage the two abstract representations to predict the

final sub-event sequence. In APSI, we propose an instantiation module, which jointly leverages the

two representations to generate detailed events. To show its effect, we compare it with two other

options: (1) Simple Merge: Merge two representation and select the top k sub-events based on the
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Model E-ROUGE1 E-ROUGE2

Simple Merge 2.5884 0.4062
Normalized 2.2238 0.3611

APSI (Instantiation) 3.4988 0.4513

Table 7.2: Performance of different merging methods.

weight; (2) Normalized: First normalize the weight of all sub-events based on each representation

and then select the top k sub-events.

From the result in Table 7.2, we can see that due to the imbalanced distribution of the two

representations, simply choosing the most weighted sub-events is problematic. On average, for

each predicate, we can collect 18.04 processes, while we can only collect 1.92 processes for each

argument. As a result, the sub-events in the predicate representation typically have a larger weight.

Thus if we simply merge them, most of the predicted sub-events will come from the predicate

representation. Ideally, the “normalized” method can eliminate the influence of such imbalance,

but it also amplifies the noise and achieves worse empirical performance. Differently, the proposed

instantiation module uses events in one representation as the reference to help instantiate the events

in the other one. As a result, we jointly use these two representations to generate a group of detailed

events, and then we can select the top k generated new events. By doing so, we do not only go

detailed from the abstract representation but also avoid the imbalanced distribution issue.

Hyper-parameter Analysis

In APSI, we use two hyper-parameterswv andwn to control the conceptualization and instantiation

depth we want over verbs and nouns respectively. 0 means no conceptualization and the larger

value indicates more conceptualization we encourage. We show the performance of APSI with

different hyper-parameter combinations in Figure 7.4, from which we can see that a suitable level

of conceptualization is the key to the success of APSI. If no conceptualization is allowed, all the

predicted events are restricted to the observed sub-event, thus we cannot predict “search house”

after seeing “search car” and some events about the house. On the other hand, if we do not restrict

the depth of conceptualization, all the sub-events will be conceptualized to be too general. As a

result, even with the instantiation module, we could not predict the detailed sub-event as we want.
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Figure 7.4: Hyper-parameter influence on the quality of APSI generated sub-event sequences. For
both wv and wn, 0 indicates no conceptualization and the larger the value, the deeper the concep-
tualization is. Best performing ranges are marked with red boxes, which indicate that the suitable
conceptualization level is the key to APSI’s success.

Figure 7.5: Case Study. We mark the covered and not covered predictions with green and red
colors.

Case Study

Figure 7.5 shows an example that we use to analyze the current limitations of APSI. We can see that

APSI can successfully predict events like “identify symptoms”, but fails to predict event “identify

causes”. Instead, it predicts “take supplements.” This is because APSI learns to predict such

sequence from other processes like “treat diarrhea” or other diseases in the observed process graphs.

Treating those diseases typically does not involve identifying the cause, which is not the case for

treating pain. And, treating diseases often involves taking medicines, which can be conceptualized

to “take supplement.” As no events about pain helps instantiate “supplement,” APSI just predicts

it.
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Figure 7.6: Demonstration of the event masked LM. Pre-trained language models are trained to
predict the masked event given other events as the context.

7.2.4 Extrinsic Evaluation

As discussed by [134], the knowledge about process and sub-events can help understand event

sequences. Thus, in this section, we investigate whether the induced process knowledge can help

predict the missing events. Given a sub-event sequence, for each event in the sequence, we can

use the rest of the sequence as the context and ask models to select the correct event against one

negative event example. To make the task challenging, instead of random sampling, we follow

Zellers et al. [180] to select similar but wrong negative candidates based on their representation

(i.e., BERT [25]) similarity. We use the same training and test as the intrinsic experiment and as a

result, we got 13,501 training sequences and 7,148 test questions.

The baseline method we are comparing with is the event-based masked language model,10

whose demonstration is shown in figure 7.6. We use pre-trained RoBERTa-base [85] to initialize

the tokenizer and transformer layer and all sequences of training processes as the training data. To

show the value of understanding the relationship between process and their sub-event sequence, for

each sub-event sequence in the test data, we first leverage the process name and different structure

prediction methods to predict sub-event sequences and use them as additional context to help the

event masked LM to predict the missing event. To show the effect upper bound of adding process

knowledge, we also tried adding the process structure provided by human beings as the context,11

10On our dataset, the RoBERTa based event LM model outperforms existing LSTM-based event prediction models.
11We randomly select another sub-event sequence that describes the same process from WikiHow, which could be
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Model Accuracy ∆

RoBERTa-based Event LM 73.59% -

+ Seq2seq (GloVe) 73.06% -0.53%
+ Seq2seq (RoBERTa) 72.33% -1.26%

+ Top1 similar (Jaccard) 72.76% -0.83%
+ Top1 similar (GloVe) 74.14% 0.55%
+ Top1 similar (RoBERTa) 74.16% 0.57%

+ APSI 74.78%† 1.19%

+ Human 76.97%‡ 3.38%

Table 7.3: Results on the event prediction task. † and ‡ indicate the statistical significance over the
baseline with p-value smaller than 0.01 and 0.001 respectively.

which is denoted as “+Human.” All models are evaluated based on accuracy.

From the results in Table 7.3, we can make the following observations. First, adding high-

quality process knowledge (i.e., APSI and Human) can significantly help the baseline model, which

indicates that adding knowledge about the process can help better understand the event sequence.

Second, the effect of process knowledge is positively correlated with their quality as shown in

Table 7.1. Adding a low-quality process structure may hurt the performance of the baseline model

due to the introduction of the extra noise. Third, the current way of using process knowledge is still

very simple and there is room for better usage of the process knowledge, as the research focus of

this work is predicting process structure rather than applying it, we leave that for the future work.

different from the currently tested sequence. As a result, adding such sequence cannot help predict all missing
events.
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CHAPTER 8

CAUSAL KNOWLEDGE ACQUISITION FROM

TIME-CONSECUTIVE IMAGES

As aforementioned, a significant advantage of representing commonsense knowledge with a struc-

tured format rather than language models is that we have the potential to go beyond text and acquire

knowledge from other modalities. In this chapter, we investigate how to acquire causal knowledge,

which is difficult to be extracted from textual data due to its sparsity, from vision signals. As an

important commonsense knowledge type, such causal knowledge has been shown to be helpful for

many artificial intelligence tasks [103, 47, 101]. Thus, it is valuable to teach machines to understand

causality [111].

Causal relations in the commonsense domain typically appear between daily eventualities (i.e.,

events and states) and are generally contributory and contextual [14]. By contributory,1 we mean

that the cause is neither necessary nor sufficient for the effect, but it strongly contributes to the

effect. By contextual, we mean that some causal relations only make sense in a certain context.

The contextual property of causal relations is important for both the acquisition and application of

causal knowledge. For example, if some people tell the AI assistant (e.g., Siri) “they are hungry” in

a meeting, a basic assistant may suggest that they order food because it knows that “being hungry”

causes “eat food.” A better assistant may recommend ordering food after the meeting because it

knows that the causal relation between “being hungry” and “eat food” may not be plausible in the

meeting context. Without understanding the contextual property of causal knowledge, achieving

such a level of intelligence would be challenging.

To help machines better understand the causality commonsense, many efforts have been devoted

to developing the causal knowledge bases. For example, ConceptNet [84] and ATOMIC [139]

leverage human-annotation to acquire the causal knowledge. Even though the annotated causal

knowledge bases are often of high quality, their effect on real applications is limited by the small

1The other two levels are absolute causality (the cause is necessary and sufficient for the effect) and conditional
causality (the cause is necessary but not sufficient for the effect), which commonly appear in the scientific domain
rather than our daily life.
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Resource Example

ConpetNet “being hungry” causes “eat”
ATOMIC “X repels Y’s attack” causes “X feels angry”

ASER “I am tired” causes “I go to sleep”

Table 8.1: Causal-related triplets in ConceptNet [84], ATOMIC [139], and ASER. No context
information is preserved.

scales. To address this issue, people try to leverage linguistic patterns (e.g., two events connected

with “Because”) [51, 87] to acquire causal knowledge from textual corpus. However, causal knowl-

edge is rarely formally expressed in textual data [84]. A pure text-based approach might struggle

at covering all causal knowledge. Besides that, as shown in Table 8.1, none of them take the afore-

mentioned contextual property of causal knowledge into consideration, which may restrict their

usage in downstream tasks.

Thus, to address the limitation of previous text-only approaches, we propose to ground causal

knowledge into the real world and explore the possibility of acquiring causal knowledge from visual

signals (i.e., images in time sequence, which are cropped from videos). By doing so, we have

three significant advantages: (1) Videos can be easily acquired and can cover rich commonsense

knowledge that may not be mentioned in the textual corpus; (2) Events contained in videos are

naturally ordered by time. As discussed by [101], there exists a strong correlation between temporal

and causal relations, and thus such time-consecutive images can become a dense causal knowledge

resource; (3) Objects from the visual signals can act as the context for detected causal knowledge,

which can remedy the aforementioned “lack of contextual property” issue of existing approaches.

Specifically, we first define the task of mining causal knowledge from time-consecutive images

and propose a high-quality dataset (Vis-Causal). To study the contextual property of causal rela-

tions, we provide two kinds of causality annotations for each pair of events: one is the causality

given specific context, and the other one is the causality without context. Distribution analysis and

case studies are conducted to analyze the contextual property of causality. An example from Vis-

Causal is shown in Figure 8.1, where the causal relation between “dog is running” and “blowing

leaves” only makes sense when the context is provided because the dog is running on the leaves, its

high speed and quickly-moved pow cause the leaves to blow around. Without the context “leaves

on the ground,” this causal relation is implausible. After that, we propose a Vision-Contextual

Causal (VCC) model, which can effectively leverage both the pre-trained textual representation
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Figure 8.1: An example of Vis-Causal. Based on the annotated plausibility, there exists a strong
causal relation from “A dog is running” to “The leaves blow around” with the visual signal as
context (i.e., on leaves), but that causal relation is no longer plausible without the context.

and visual context to acquire causal knowledge and be used as a baseline method for future works.

Experimental results demonstrate that even though the task is still challenging, by jointly lever-

aging the visual and contextual representation, the proposed model can better identify meaningful

causal relations from time-consecutive images.

The rest of the chapter is organized as follows. In Section 8.1, we formally define the task of

learning contextual causality from the visual signal. After that, we present the construction details

about Vis-Causal in Section 8.2. In Section 8.3 and 8.4, we present the details about the proposed

VCC model and the experiments.

8.1 The Task Definition

As introduced in the introduction, our ultimate goal is to acquire contextual causal knowledge from

videos. However, as current models cannot afford to process videos directly, we simplify the task

into mining causal knowledge from time-consecutive frames (i.e., images), which are cropped from

the video. Thus, we formally define the task as follows. Each image pair P ∈ P, where P is the

overall image pair set, consists of two images I1 and I2, sampled from the same video, in temporal

order (i.e., I1 appears before I2). For each P, our goal is to identify all possible causal relations
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between the contained images. Normally, this task contains two sub-tasks: identifying events in

images and identifying causality relation between contained events. As there exists a huge overlap

between the event identification task and the scene graph generation task [173] in the computer

vision (CV) community, which has been extensively studied [175, 77], in this work, we focus on

the second sub-task. We assume that the event set contained in I1 is denoted as E1, and the set of

all events contained in all images sampled from V1 is denoted as Ev. For each event e1 ∈ E1, our

goal is finding all events e2 ∈ Ev such that e1 causes e2.

8.2 The Vis-Causal Dataset

In this section, we introduce the details about the creation of Vis-Causal, which was carried out in

four steps: (1) Pre-processing the raw video data into frames for further annotation; (2) Identifying

the contained events from the frames; (3) First-round of causality annotation, which requires anno-

tators to write down events that the given event can cause; (4) Second-round of causality annotation,

which refines the quality of the annotation from step three via more fine-grained annotation and two

settings are included (one is with the visual context and the other one is without any context). We

select Amazon MTurk2 as the annotation platform. We elaborate on each step as follows.

8.2.1 Data Source

To acquire a broad coverage of daily life causality, we choose to use ActivityNet [49], which

contains short videos from YouTube, as the video resource. We randomly select 1,000 videos. We

take five uniformly sampled screen-shots for each video and take adjoined screen-shots as pairs

of time-consecutive images to capture the chained events better.3 As a result, we collected 4,000

image pairs.

8.2.2 Event Identification

In the first step, we invite annotators to write down any events they can identify in the first image.

Clear instructions and examples are given to help annotators understand the definition of events

2https://www.mturk.com/
3Ideally, we can select any two screen-shots to form the time-consecutive image pairs. However, as we could not
afford to annotate all combinations, we only consider the adjoined ones at the current stage.
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Figure 8.2: Candidate event pair Preparation.

and our task. We invite three annotators for each image pair, resulting in 12,000 events in total for

4,000 image pairs.

8.2.3 First-round Causality Annotation

After identifying events, we invite annotators to identify related event pairs, which are used as

candidates for next-step causal relation annotation. For each pair of time-consecutive images, we

select all three identified events in the first image, and for each one of them, we ask annotators to

describe one event that happens in the second image and is caused by the selected event, which

occurs in the first image. If no suitable event is found, which is possible due to causal relations’

sparseness, the annotators could choose “None” as the answer. A screenshot of this step is shown

in Figure 8.2. For each question, we invite three different annotators to provide annotations. After

filtering out answers that contain “None” or have less than two words, we obtain 23,558 event pair

candidates. On average, we collect 5.89 candidate event pairs for each image pair.

8.2.4 Second-round Causality Annotation

As crowd-workers, unlike experts, are less likely to effectively distinguish the difference between

inference and causality (For example, “A cat is running” infers “An animal is running” but “A cat

is running” doesn’t cause “an animal is running”), such relations are often mistakenly annotated

as causal relation in the first-round annotation based on our observation. To remedy this problem,
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Figure 8.3: Causal relation annotation. We only show the survey for causal relation annotation with
context as an example. The only difference in the w/o context setting is that we remove the images.
Distribution of plausibility scores under different settings and their difference.

in the second round of annotation, we first present a clear definition and several examples of all

possible relations (e.g., “Inference” and “Causality”) and then ask annotators to select the most

plausible relations for all candidate event pairs, which is more fine-grained and thus achieves the

better annotation quality. An example is shown in Figure 8.3. Besides that, to investigate the

contextual property of causal knowledge, two settings are considered for the annotation (one with

the context and one without). For each setting, we invite five annotators for annotating each event

pair. Following previous works [128, 52], we employ Inter Annotator Agreement (IAA), which

computes the average agreement of an annotator with the average of all other annotators, to evaluate

the overall annotation quality. As a result, we achieve 78% and 76% IAA scores for “with context”

and “without context” settings respectively. We achieve slightly lower agreement in the “without

context” setting. One possible explanation is that when no context is provided, different people may

think about different contexts, and thus their annotations about causal relations could be slightly

different.
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Figure 8.4: Distribution of plausibility scores under different settings and their difference.

8.2.5 Annotation Analysis

The distribution of annotation results for both settings are shown in Figure 8.4(a) and Figure 8.4(b)

respectively. For each pair of events, we compute the plausibility based on voting. For example, if

four out of five annotators vote “causal,” its causal plausibility is 0.8. In general, we can see that the

majority of the candidate events pairs have weak causal relations for both settings, and only a small

portion of the candidates contain strong causal relations, especially for the “with context” setting.

One possible explanation is that when no context is provided, humans can think about multiple

contexts and find the most suitable one such that the causal relation is plausible in that scenario.

However, when the visual context is provided, where the scenario is fixed, humans do not have the

freedom to choose a suitable scenario by themselves. As a result, annotators tend to annotate more

plausible causal relations in the “no context” setting.

To investigate the contextual property of causal relations, we show the distribution of plausibil-

ity difference (“with context” minus “without context”) in Figure 8.4(c). From the result, we can

observe that about 6% of event pairs, which is indicated with the dashed box, have stronger causal

relations without any context, while about 1% of event pairs, which is indicated with the solid box,

have a stronger causal relation when the visual context is provided. Two examples of both cases

are shown in Figure 8.4(d) and 8.4(e) respectively.
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#Videos #Images #Pairs #Positives #Cand.

Train 800 4,000 3,200 2,599 31.8
Dev 100 500 400 329 32.1
Test 100 500 400 282 32.2

Table 8.2: Dataset statistics. #Videos, #Images, and #Pairs mean the number of videos, images,
and image pairs, respectively. #Positives denotes the number of event pairs labeled with causality
relation. #Cand. denotes the average length of the candidate event list.

8.2.6 Dataset Splitting and Statistics

We split the dataset into the train, dev, and test sets based on the original split of ActivityNet [49]

and collect 800, 100, and 100 videos for the train, dev, and test set, respectively. We select positive

causal relations based on the annotation under the “with context” setting. If at least four of five

annotators think there exists a causal relation between a pair of events given the context, we will

treat it as a positive example. As a result, we got 2,599, 329, and 282 positive causal pairs for the

train, dev, and test set, respectively. On average, each event pair contains 11.41 words, and the total

vocabulary size is 10,566. We summarize the detailed dataset statistics in Table 8.2.

8.3 The VCC Model

This section introduces the proposed Vision-Contextual Causal (VCC) Model, which leverages

both the visual context and contextual representation of events to predict the causal relations. We

show the overall framework in Figure 8.5. In total, we have three major components: event en-

coding, which encodes the two events into vectors for further prediction; visual context encoding,

which encodes the context frame such that the context can be utilized in the model; and cross

attention, which aims at finding the best context and event representation via the attention mecha-

nism [164]. The details about these components are introduced as follows.

8.3.1 Textual Event Encoding

As both e1 and e2 are represented with natural language, we begin with converting them into vector

representations. In this work, we leverage a pre-trained language representation model BERT [25]

to encode all events. Assuming that after the tokenization, event e contains n tokensw1,w2, ...,wn,

we denote their contextualized representations after BERT as w1, w2, ..., wn.
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Figure 8.5: Demonstration of the proposed model. We use e1 and e2 to denote the vector repre-
sentation of e1 and e2 after encoding respectively. Assuming that three objects (o1, o2, and o3),
whose vector representations are denoted as o1, o2, and o3 respectively, are extracted from the
two context images, a cross attention module is proposed to jointly leverage the event and context
representation to make the final prediction.

8.3.2 Visual Context Encoding

Following the standard approach in multi-modal approaches [173, 22], we first leverage an object

detection module to detect objects from images and use all extracted objects to represent the visual

context. Assuming that for I1 and I2, we extractm1 andm2 objects, respectively. After combining

all objects from two images together and sorting them based on the confidence score provided by

the object detection module, we keep the top m objects and denote them as o1,o2, ...,om. The

motivation for that operation is to avoid the influence of noise introduced by the object detection

module. As all objects are in the form of words, to align with events, we use the same pre-trained

language representation model to extract the vector representation4 of selected objects and denote

them as o1, o2, ..., om ∈ O.

8.3.3 Cross-Attention Module

The cross-attention module aims to minimize the influence of noise by selecting important context

objects with events and informative tokens in events with the context. Thus, the cross-attention

4If an object word is tokenized to multiple tokens, we take their average representation as the token representation.
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module contains two sub-steps: (1) context representation; (2) event representation.

Context Representation: For each event e, whose tokens’ vector representations are w1, w2, ..., wn,

we first take the average of all tokens and denote the resulted average vector as w̃. As the vector

representation set of all selected objects is denoted as O, we compute the overall context represen-

tation as:

o =
∑
o′∈O

aw̃,o′ · o′, (8.1)

where aw̃,o′ is the attention weight of w̃ on object o′. Here we compute the attention weight as:

aw̃,o′ = NNa([w̃, o′]), (8.2)

whereNNa is a standard two-layer feed forward neural network and [, ] indicates the concatenation.

Event Representation: After getting the context representation, the next step is computing the

event representation. Assuming that the vector set of e is W, we can get the event representation

with a similar attention structure:

e =
∑

w′∈W
bo,w′ ·w′,

bo,w′ = NNb([o, w′]),

where b is the attention weight we computed with another feed forward neural network NNb.

8.3.4 Causality Prediction

Assuming that the context representations with e1 and e2 as attention signal are denoted as oe1 and

oe2 respectively and the overall representations of e1 and e2 are e1 and e2, we can then predict the

final causality score as follows:

F(e1, e2, I1, I2) = NNc([e1, e2, oe1 , oe2 ]). (8.3)

8.4 The Experiment

This section presents experiments and analysis to show that both the pre-trained textual represen-

tation and visual context can help learn causal knowledge from time-consecutive images.
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8.4.1 Evaluation Metric

As each event in the first image could cause multiple events in the second image, following previous

works [173], we evaluate different causality extraction models with a ranking-based evaluation

metric. Given each event e in the first images, models are required to rank all candidate events

based on how likely they think these events are caused by e. We then evaluate different models

based on whether the correct caused event is covered by the top one, five, or ten ranked events.

We denote these evaluation metrics as Recall@1, Recall@5, and Recall@10. In our experiment,

to make the task more challenging, we only consider detected events in the same video as negative

examples rather than randomly sampling the negative examples.

8.4.2 Baseline Methods

To prove that the visual context is crucial and the proposed cross-attention module is helpful, we

compare VCC with the following models:

1. No Visual Context: Directly predicts the causal relation between events without considering

the visual context. We take the average of word representations as the event representation and

concatenate the representations of two events together for the final prediction for each event.

2. No Attention: Removes the cross-attention module and uses the average word embeddings of

all selected objects to represent the context.

3. ResNet as Context: Removes the object detection module and uses the average image repre-

sentation extracted by ResNet-152 [48] as the context representation. We acquire event repre-

sentation as same as the “no context” setting and concatenate the representation of context and

events together for the final prediction.

Besides the aforementioned baselines, we also present the performance of a “random guess”

baseline, which randomly ranks all candidate events and can be used as a performance lower-bound

for all causality extraction models.
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(a) Recall@1 (b) Recall@5

(c) Recall@10

Figure 8.6: Experimental results on Recall@1, Recall@5, and Recall@10, respectively.

8.4.3 Implementation Details

Model Details: We use the pre-trained BERT model [25] as the textual representation model to

encode both events and objects detected from images. Out-of-vocabulary words are initialized

with zero vectors. We follow the previous scene graph generation work [173] to leverage a Faster

R-CNN network [129],5 which is trained on MS-COCO [82], to detect objects from the images.

Experimental results on Recall@1, Recall@5, and Recall@10, respectively. We set the hidden

state size in the feed-forward neural network to be 200 and the number of selected objects m to

be 10. The total number of trainable parameters is 109.9 million (including 109.48 million from

BERT-base).

5https://github.com/endernewton/tf-faster-rcnn
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Training Details: During the training phase, for each positive example, we randomly select one

negative example and use cross-entropy as the loss function. We employ stochastic gradient descent

(SGD) as the optimizer. All parameters are initialized randomly, and the learning rate is set to be

10−4. All models are trained with up to ten epochs,6 and the models that perform best on the

dev set are evaluated on the test set. The experiments are implemented on Intel(R) Xeon(R) CPU

E5-2640v4@2.40GHz and one GTX-1080 GPU. Each training epoch takes 18 minutes on average.

8.4.4 Result Analysis

We report the performance of all models on all categories and show the results in Figure 8.6, from

which we can make the following observations:

1. All models significantly outperform the “random guess” baseline, which shows that models can

learn to extract meaningful causal knowledge from these time-consecutive images and learning

causal knowledge from the visual signal can be a good supplement for the current text-based

approach of acquiring causal knowledge in the future.

2. With the help of the context information, VCC outperforms the baseline “No Context” model

in most experiment settings, proving the importance of visual context and is consistent with our

previous observation that some causality only makes sense in certain contexts.

3. The proposed VCC model outperforms the “No Attention” model significantly, demonstrating

the influence of noise introduced by the object detection module and the effectiveness of the

proposed cross-attention module.

4. The proposed VCC model, which first extracts objects from images and then use extracted

objects as the context, outperforms the “ResNet as Context” baseline, which directly uses the

ResNet encoded image representation as the context, even though it does not suffer from the

noise introduced by the object detection module at all. One possible explanation is that the event

textual representation and the ResNet encoded image representation are vectors in different

semantic spaces (one in language and one in vision), which may not perfectly align with each

other. As a comparison, in the proposed model, we first extract objects from images and then

encode them as text, and thus the alignment issue no longer exists.

6All models converge before ten epochs.
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R@1 R@5 R@10

Random Guess 2.13 15.25 30.14

BERT 2.13 22.34 39.00
GPT-2 3.55 17.73 34.40

VCC (BERT) 8.87 34.75 63.12
VCC (GPT-2) 7.80 31.56 56.03

Table 8.3: Performances of different models. Best-performing models are indicated with the bold
font.

5. In general, even though the proposed model outperforms all baseline methods and can learn to

extract meaningful causal knowledge from the training data, the task is still challenging due to

the following reasons: (1) Missing information about the visual context: the performance of

current object detection module is not good enough and many essential objects related to the

two events could be missing; (2) Correct resolution of pronouns: pronouns frequently appear in

events and without the correct resolution of those pronouns, it is hard to fully understand the se-

mantic meaning of events; (3) Lack of support of external knowledge, especially commonsense

knowledge.

8.4.5 Can Language Representation Models Understand Causality?

As observed in [116], language representation models can preserve rich knowledge, in this sub-

section, we conduct experiments to investigate whether pre-trained language representation models

(i.e., BERT [25] and GPT-2 [121]) can understand causality without any training. For each candi-

date event pair (e.g., (“A dog is running”, “The leaves blow around”)), we convert it into a natural

sentence (e.g., “A dog is running, so the leaves blow around”), and then input it into the language

representation model. The overall probability returned by models can be used as their causality

predictions. The higher probability indicates higher plausibility prediction. We rank all candi-

dates by their probabilities and evaluate the models in the same way as previous experiments. We

conduct experiments on BERT-base7 and GPT-2 (774 million parameters). with the Hugging face

implementation.8 Besides unsupervised approaches, we also present the performances of replacing

the language representation module in VCC with different pre-trained models.

7We also tried BERT large, but it does not make a significant improvement over the base model.
8https://github.com/huggingface/transformers
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Figure 8.7: Given the event “wash car” in the first image, we show the top four events that VCC pre-
dicts to be contained in the second image and caused by “wash car.” Correct and wrong predictions
are indicated with green and orange backgrounds, respectively.

From the experimental results in Table 8.3, we can see that, compared with the “random guess”

baseline, unsupervised BERT and GPT-2 only achieved slightly better performance. The reason

behind this is that even though these pre-trained language representation models contain rich se-

mantics about events, they can only distinguish which two events are more relevant rather than

identify the causality between them. However, if we incorporate them into the VCC model and

further train them, they will achieve much better performance, which shows that if we allow further

training, the model will learn how to better use the contained rich semantics and thus achieve better

performance. These results show that textual data alone is not enough to cover the rich and complex

causal knowledge and further demonstrate the importance of this work, investigating how to mine

causal knowledge from the visual data.

8.4.6 Case Study

To further analyze the success and limitation of the proposed VCC model, we present a case study,

where predictions are sorted based on the prediction scores, in Figure 8.7, from which we can

see that VCC successfully predict that “wash car” can cause “ground becomes wet” and “car is
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cleaned,” but it also makes mistakes. For example, based on these two images, humans know that

the car does not change color, but VCC may mistakenly connect the event “change color” with

“wash” from some other training examples. In this case, using a few objects to represent images

may not be enough to cover all the visual information. Besides that, VCC also predicts “Man sees

the car”, which happens in the second image but is not caused by “wash.” Understanding this might

need inference over external knowledge. How to leverage external knowledge to better understand

the visual signal and acquire more accurate causal knowledge is left for our future investigation.
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PART 3

COMMONSENSE KNOWLEDGE APPLICATION

After introducing why higher-order selectional preference is a sound commonsense representation

methodology in Part 1 and how can follow this methodology to acquire the commonsense knowl-

edge from different modalities (i.e., text, existing knowledge graphs, and vision) in Part 2, in this

part, we explore how to apply the structured knowledge for understanding natural language. We

first use pronoun coreference resolution as the downstream task to investigate how can we use

the structured knowledge to help current deep models. In Chapter 9, we try to convert structured

knowledge into features and append them to local context representation captured by pre-trained

language models. After that, to address the limitation that not all structured knowledge can be

easily converted into numerical features (higher-order selectional preference), in Chapter 10, we

propose a joint attention network to directly conduct inference over the original format of the struc-

tured knowledge. In the end of this part, we do not restrict to a specific task and try to explore

a general commonsense inference model that can use knowledge from ASER to solve multiple

natural language understanding tasks at the same time in Chapter 11.
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CHAPTER 9

STRUCTURED KNOWLEDGE AS FEATURE FOR
PRONOUN COREFERENCE RESOLUTION

The question of how human beings resolve pronouns has long been of interest to both linguistics

and natural language processing (NLP) communities, for the reason that pronoun itself has weak

semantic meaning [30] and brings challenges in natural language understanding. To explore so-

lutions for that question, pronoun coreference resolution [53] was proposed. As an important yet

vital sub-task of the general coreference resolution task, pronoun coreference resolution is to find

the correct reference for a given pronominal anaphor in the context and has been shown to be cru-

cial for a series of downstream tasks [96], including machine translation [97], summarization [155],

information extraction [28], and dialog systems [156].

Figure 9.1: Pronoun coreference examples, where each example requires different knowledge for
its resolution. Blue bold font refers to the target pronoun, where the correct noun reference and
other candidates are marked by green underline and brackets, respectively.

Conventionally, people design rules [53, 99, 95] or use features [100, 16, 74] to resolve the

pronoun coreferences. These methods heavily rely on the coverage and quality of the manually

defined rules and features. Until recently, end-to-end solution [69] was proposed towards solving
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the general coreference problem, where deep learning models were used to better capture contextual

information. However, training such models on annotated corpora can be biased and normally does

not consider external knowledge.

Despite the great efforts made in this area in the past few decades [53, 95, 100, 124], pronoun

coreference resolution remains challenging. The reason behind is that the correct resolution of

pronouns can be influenced by many factors [30]; many resolution decisions require reasoning

upon different contextual and external knowledge [125], which is also proved in other NLP tasks

[149, 150, 187]. Figure 9.1 demonstrates such requirement with three examples, where Example A

depends on the plurality knowledge that “them” refers to plural noun phrases; Example B illustrates

the gender requirement of pronouns where “she” can only refer to a female person (girl); Example C

requires a more general type of knowledge1 that “cats can climb trees but a dog normally does not.”

All of these knowledge are difficult to be learned from training data. Considering the importance of

both contextual information and external human knowledge, how to jointly leverage them becomes

an important question for pronoun coreference resolution.

In this chapter, we propose a two-layer model to address the question while solving two chal-

lenges of incorporating external knowledge into deep models for pronoun coreference resolution,

where the challenges include: first, different cases have their knowledge preference, i.e., some

knowledge is exclusively important for certain cases, which requires the model to be flexible in se-

lecting appropriate knowledge per case; second, the availability of knowledge resources is limited

and such resources normally contain noise, which requires the model to be robust in learning from

them.

Consequently, in our model, the first layer predicts the relations between candidate noun phrases

and the target pronoun based on the contextual information learned by neural networks. The second

layer compares the candidates pair-wisely, in which we propose a knowledge attention module

to focus on appropriate knowledge based on the given context. Moreover, a softmax pruning is

placed in between the two layers to select high confident candidates. The architecture ensures the

model being able to leverage both context and external knowledge. Especially, compared with

conventional approaches that simply treat external knowledge as rules or features, our model is

not only more flexible and effective but also interpretable as it reflects which knowledge source

1This is normally as selectional preference (SP) [53], which is defined as given a predicate (verb), a human has the
preference for its argument (subject in this example).
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has the higher weight in order to make the decision. Experiments are conducted on a widely used

evaluation dataset, where the results prove that the proposed model outperforms all baseline models

by a great margin.

9.1 The Task

Following the conventional setting [53], the task of pronoun coreference resolution is defined as: for

a pronoun p and a candidate noun phrase set N, the goal is to identify the correct non-pronominal

references set2 C. the objective is to maximize the following objective function:

J =

∑
c∈C e

F(c,p)∑
n∈N e

F(n,p) , (9.1)

where c is the correct reference and n the candidate noun phrase. F(·) refers to the overall corefer-

ence scoring function for each n regarding p. Following [95], all non-pronominal noun phrases in

the recent three sentences of the pronoun p are selected to form N.

Particularly in our setting, we want to leverage both the local contextual information and exter-

nal knowledge in this task, thus for each n and p, F(.) is decomposed into two components:

F(n,p) = Fc(n,p) + Fk(n,p), (9.2)

where Fc(n,p) is the scoring function that predicts the relation between n and p based on the

contextual information; Fk(n,p) is the scoring function that predicts the relation between n and

p based on the external knowledge. There could be multiple ways to compute Fc and Fk, where a

solution proposed in this chapter is described as follows.

9.2 The Model

The architecture of our model is shown in Figure 9.2, where we use two layers to incorporate con-

textual information and external knowledge. Specifically, the first layer takes the representations

of different n and the p as input and predict the relationship between each pair of n and p, so as

to compute Fc. The second layer leverages the external knowledge to compute Fk, which consists

2It is possible that a pronoun has multiple references.
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Figure 9.2: The architecture of the two-layer model for pronoun coreference resolution. The first
layer encodes the contextual information for computing Fc. The second layer leverages external
knowledge to score Fk. A pruning layer is applied in between the two layers to control computa-
tional complexity. The dashed boxes in the first and second layer refer to span representation and
knowledge scoring, respectively.

of pair-wise knowledge score fk among all candidate n. To enhance the efficiency of the model, a

softmax pruning module is applied to select high confident candidates into the second layer. The

details of the aforementioned components are described in the following subsections.

9.2.1 Encoding Contextual Information

Before Fc is computed, the contextual information is encoded through a span3 representation (SR)

module in the first layer of the model. Following Lee et al. [69], we adopt the standard bidirectional

LSTM (biLSTM) [54] and the attention mechanism [4] to generate the span representation, as

3Both noun phrases and the pronoun are treated as spans.
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Figure 9.3: The structure of span representation. Bidirectional LSTM and inner-span attention
mechanism are employed to capture the contextual information.

shown in Figure 9.3. Given that the initial word representations in a span ni are x1, ..., xT ,

we denote their representations x∗1, ..., x∗T after encoded by the biLSTM. Then we obtain the

inner-span attention by

at =
eαt∑T
k=1 e

αk
, (9.3)

where αt is computed via a standard feed-forward neural network4 αt = NNα(x∗t). Thus, we have

the weighted embedding of each span x̂i through

x̂i =
T∑
k=1

ak · xk. (9.4)

Afterwards, we concatenate the starting (x∗start) and ending (x∗end) embedding of each span, as well

as its weighted embedding (x̂i) and the length feature (φ(i)) to form its final representation e:

ei = [x∗start, x∗end, x̂i,φ(i)]. (9.5)

Once the span representation of n ∈ N and p are obtained, we compute Fc for each n with a

4We use NN to present feed-forward neural networks throughout this chapter.
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Figure 9.4: The structure of the knowledge attention module. For each feature ki from knowledge
source i, the the weighting component predict its weight wi and the scoring component computes
its knowledge score fik. Then a weighted sum is obtained for fk.

standard feed-forward neural network:

Fc(n,p) = NNc([en, ep, en � ep]), (9.6)

where � is the element-wise multiplication.

9.2.2 Processing External Knowledge

In the second layer of our model, external knowledge is leveraged to evaluate all candidate n so as

to give them reasonable Fk scores. In doing so, each candidate is represented as a group of features

from different knowledge sources, e.g., “the cat” can be represented as a singular noun, unknown

gender creature, and a regular subject of the predicate verb “climb.” For each candidate, we conduct

a series of pair-wise comparisons between it and all other ones to result in its Fk score. An attention

mechanism is proposed to perform the comparison and selectively use the knowledge features.

Consider there exists noise in external knowledge, especially when it is automatically generated,

such attention mechanism ensures that, for each candidate, reliable and useful knowledge is utilized

rather than ineffective ones. The details of the knowledge attention module and the overall scoring

are described as follows.

Knowledge Attention Figure 9.4 demonstrates the structure of the knowledge attention module,

where there are two components: (1) weighting: assigning weights to different knowledge features
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regarding their importance in the comparison; (2) scoring: valuing a candidate against another one

based on their features from different knowledge sources. Assuming that there are m knowledge

sources input to our model, each candidate can be represented by m different features, which are

encoded as embeddings. Therefore, two candidates n and n′ regarding p have their knowledge

feature embeddings k1
n,p, k2

n,p, ..., kmn,p and k1
n′,p, k2

n′,p, ..., kmn′,p, respectively. The weighting com-

ponent receives all features k for n and n′, and the span representations en and en′ as input, where

en and en′ help selecting appropriate knowledge based on the context. As a result, for a candidate

pair (n, n′) and a knowledge source i, its knowledge attention score is computed via

βi(n,n′,p) = NNka([oin,p, oin′,p, oin,p � oin′,p]), (9.7)

where oin,p = [en, kin,p] and oin′,p = [en′ , kin′,p] are the concatenation of span representation and

external knowledge embedding for candidate n and n′ respectively. The weight for features from

different knowledge sources is thus computed via

wi =
eβi∑m
j=1 e

βj
. (9.8)

Similar to the weighting component, for each feature i, we compute its score fik(n,n′,p) for n

against n′ in the scoring component through

fik(n,n′,p) = NNks([kin,p, kin′,p, kin,p � kin′,p]). (9.9)

where it is worth noting that we exclude e in this component for the reason that, in practice, the

dimension of e is normally much higher than k. As a result, it could dominate the computation if e

and k is concatenated.5

Once the weights and scores are obtained, we have a weighted knowledge score for n against

n′:

fk(n,n′,p) =
m∑
i=1

wi · fik(n,n′,p). (9.10)

Overall Knowledge Score After all pairs of n and n′ are processed by the attention module, the

overall knowledge score for n is computed through the averaged fk(n,n′,p) over all n′:

Fk(n,p) =

∑
n′∈No

fk(n,n′,p)
|No|

, (9.11)

5We do not have this concern for the weighting component because the softmax (c.f. Eq. 9.8) actually amplifies the
difference of β even if they are not much differentiated.
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type train dev test all

Third Personal 21,828 2,518 3,530 27,876
Possessive 7,749 1,007 1,037 9,793

All 29,577 3,525 4,567 37,669

Table 9.1: Statistics of the evaluation dataset. Number of selected pronouns are reported.

where No = N−n for each n.

9.2.3 Softmax Pruning

Normally, there could be many noun phrases that serve as the candidates for the target pronoun.

One potential obstacle in the pair-wise comparison of candidate noun phrases in our model is the

squared complexity O(|N|2) with respect to the size of N. To filter out low confident candidates so

as to make the model more efficient, we use a softmax-pruning module between the two layers in

our model to select candidates for the next step. The module takes Fc as input for each n, uses a

softmax computation:

F̂c(n,p) =
eFc(n,p)∑

ni∈N e
Fc(ni,p) . (9.12)

where candidates with higher F̂c are kept, based on a threshold t predefined as the pruning standard.

Therefore, if candidates have similar Fc scores, the module allow more of them to proceed to the

second layer. Compared with other conventional pruning methods [69, 70] that generally keep a

fixed number of candidates, our pruning strategy is more efficient and flexible.

9.3 Experiment Settings

9.3.1 Data

The CoNLL-2012 shared task [117] corpus is used as the evaluation dataset, which is selected

from the Ontonotes 5.0.6 Following conventional approaches [100, 74], for each pronoun in the

document, we consider candidate n from the previous two sentences and the current sentence. For

pronouns, we consider two types of them following Ng [100], i.e., third personal pronoun (she, her,

6https://catalog.ldc.upenn.edu/LDC2013T19
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he, him, them, they, it) and possessive pronoun (his, hers, its, their, theirs). Table 9.1 reports the

number of the two type pronouns and the overall statistics for the experimental dataset. According

to our selection range of candidate n, on average, each pronoun has 4.6 candidates and 1.3 correct

references.

9.3.2 Knowledge Types

In this study, we use two types of knowledge in our experiments. The first type is linguistic features,

i.e., plurality and animacy & gender. We employ the Stanford parser,7 which generates plurality,

animacy, and gender markups for all the noun phrases, to annotate our data. Specifically, the

plurality feature denotes each n and p to be singular or plural. For each candidate n, if its plurality

status is the same as the target pronoun, we label it 1, otherwise 0. The animacy & gender (AG)

feature denotes whether a n or p is a living object, and being male, female, or neutral if it is alive.

For each candidate n, if its AG feature matches the target pronoun’s, we label it 1, otherwise 0.

The second type is the selectional preference (SP) knowledge. For this knowledge, we create

a knowledge base by counting how many times a predicate-argument tuple appears in a corpus

and use the resulted number to represent the preference strength. Specifically, we use the English

Wikipedia8 as the base corpus for such counting. Then we parse the entire corpus through the

Stanford parser and record all dependency edges in the format of (predicate, argument, relation,

number), where predicate is the governor and argument the dependent in the original parsed depen-

dency edge.9 Later for sentences in the training and test data, we firstly parse each sentence and

find out the dependency edge linking p and its corresponding predicate. Then for each candidate10

n in a sentence, we check the previously created SP knowledge base and find out how many times

it appears as the argument of different predicates with the same dependency relation (i.e., nsubj and

dobj). The resulted frequency is grouped into the following buckets [1, 2, 3, 4, 5-7, 8-15, 16-31,

32-63, 64+] and we use the bucket id as the final SP knowledge. Thus in the previous example:

7https://stanfordnlp.github.io/CoreNLP/
8https://dumps.wikimedia.org/enwiki/
9In Stanford parser results, when a verb is a linking verb (e.g., am, is), an ’nsubj’ edge is created between its pred-
icative and subject. Thus for this case the predicative is treated as the predicate for the subject (argument) in our
study.

10If a noun phrase contains multiple words, we use the parsed result to locate its keyword and use it to represent the
entire noun phrase.
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The dog is chasing the cat but it climbs the tree.

Its parsing result indicates that “it” is the subject of the verb “climb.” Then for “the dog,” “the cat,”

and “the tree,” we check their associations with “climb” in the knowledge base and group them in

the buckets to form the SP knowledge features.

9.3.3 Baselines

Several baselines are compared in this work. The first two are conventional unsupervised ones:

• Recent Candidate, which simply selects the most recent noun phrase that appears in front of the

target pronoun.

• Deterministic model [123], which proposes one multi-pass seive model with human designed

rules for the coreference resolution task.

Besides the unsupervised models, we also compare with three representative supervised ones:

• Statistical model, proposed by Clark and Manning [18], uses human-designed entity-level fea-

tures between clusters and mentions for coreference resolution.

• Deep-RL model, proposed by Clark and Manning [19], a reinforcement learning method to

directly optimize the coreference matrix instead of the traditional loss function.

• End2end is the current state-of-the-art coreference model [70], which performs in an end-to-end

manner and leverages both the contextual information and a pre-trained language model [114].

Note that the Deterministic, Statistical, and Deep-RL models are included in the Stanford

CoreNLP toolkit,11 and experiments are conducted with their provided code. For End2end, we

use their released code12 and replace its mention detection component with gold mentions for the

fair comparison.

To clearly show the effectiveness of the proposed model, we also present a variation of our

model as an extra baseline to illustrate the effect of different knowledge incorporation manner:

11https://stanfordnlp.github.io/CoreNLP/coref.html
12https://github.com/kentonl/e2e-coref
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Model
Third Personal Pronoun Possessive Pronoun All

P R F1 P R F1 P R F1

Recent Candidate 50.7 40.0 44.7 64.1 45.5 53.2 54.4 41.6 47.2
Deterministic [123] 68.7 59.4 63.7 51.8 64.8 57.6 62.3 61.0 61.7

Statistical [18] 69.1 62.6 65.7 58.0 65.3 61.5 65.3 63.4 64.3
Deep-RL [19] 72.1 68.5 70.3 62.9 74.5 68.2 68.9 70.3 69.6
End2end [70] 75.1 83.7 79.2 73.9 82.1 77.8 74.8 83.2 78.8

Feature Concatenation 73.5 88.3 80.2 72.5 87.3 79.2 73.2 87.9 79.9
The Complete Model 75.4 87.9 81.2 74.9 87.2 80.6 75.2 87.7 81.0

Table 9.2: Pronoun coreference resolution performance of different models on the evaluation
dataset. Precision (P), recall (R), and F1 score are reported, with the best one in each F1 column
marked bold.

• Feature Concatenation, a simplified version of the complete model that removes the second

knowledge processing layer, but directly treats all external knowledge embeddings as features

and concatenates them to span representations.

9.3.4 Implementation

Following previous work [70], we use the concatenation of the 300d GloVe embeddings [113]

and the ELMo [114] embeddings as the initial word representations. Out-of-vocabulary words are

initialized with zero vectors. Hyper-parameters are set as follows. The hidden state of the LSTM

module is set to 200, and all the feed-forward networks in our model have two 150-dimension

hidden layers. The default pruning threshold t for softmax pruning is set to 10−7. All linguistic

features (plurality and AG) and external knowledge (SP) are encoded as 20-dimension embeddings.

For model training, we use cross-entropy as the loss function and Adam [64] as the optimizer.

All the aforementioned hyper-parameters are initialized randomly, and we apply dropout rate 0.2 to

all hidden layers in the model. Our model treats a candidate as the correct reference if its predicted

overall score F(n,p) is larger than 0. The model training is performed with up to 100 epochs, and

the best one is selected based on its performance on the development set.
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F1 ∆F1

The Complete Model 81.0 -

–Plurality knowledge 80.7 -0.3
–AG knowledge 80.5 -0.5
–SP knowledge 80.4 -0.6

–Knowledge Attention 80.1 -0.9

Table 9.3: Performance of our model with removing different knowledge sources and knowledge
attention.

9.4 Experimental Results

Table 9.2 compares the performance of our model with all baselines. Overall, our model performs

the best with respect to all evaluation metrics. Several findings are also observed from the results.

First, manually defined knowledge and features are not enough to cover rich contextual information.

Deep learning models (e.g., End2end and our proposed models), which leverage text representa-

tions for context, outperform other approaches by a great margin, especially on the recall. Second,

external knowledge is highly helpful in this task, which is supported by that our model outperforms

the End2end model significantly.

Moreover, the comparison between the two variants of our models is also interesting, where the

final two-layer model outperforms the Feature Concatenation model. It proves that simply treating

external knowledge as the feature, even though they are from the same sources, is not as effective

as learning them in a joint framework. The reason behind this result is mainly from the noise

in the knowledge source, e.g., parsing error, incorrectly identified relations, etc. For example, the

plurality of 17% noun phrases are wrongly labeled in the test data. As a comparison, our knowledge

attention might contribute to alleviate such noise when incorporating all knowledge sources.

Effect of Different Knowledge To illustrate the importance of different knowledge sources and

the knowledge attention mechanism, we ablate various components of our model and report the

corresponding F1 scores on the test data. The results are shown in Table 9.3, which clearly show

the necessity of the knowledge. Interestingly, AG contributes the most among all knowledge types,

which indicates that potentially more cases in the evaluation dataset demand on the AG knowledge

than others. More importantly, the results also prove the effectiveness of the knowledge attention

module, which contributes to the performance gap between our model and the Feature Concatena-
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Figure 9.5: Effect of different thresholds on candidate numbers. Max and Average number of
candidates after pruning are represented with solid lines in blue and orange, respectively. Two
dashed lines indicate the max and the average number of candidates before pruning.

tion one.

Effect of Different Pruning Thresholds We try different thresholds t for the softmax pruning in

selecting reliable candidates. The effects of different thresholds on reducing candidates and overall

performance are shown in Figure 9.5 and 9.6 respectively. Along with the increase of t, both the

max and the average number of pruned candidates drop quickly, so that the space complexity of

the model can be reduced accordingly. Particularly, there are as much as 80% candidates can be

filtered out when t = 10−1. Meanwhile, when referring to Figure 9.6, it is observed that the

model performs stable with the decreasing of candidate numbers. Not surprisingly, the precision

rises when reducing candidate numbers, yet the recall drops dramatically, eventually results in the

drop of F1. With the above observations, the reason we set t = 10−7 as the default threshold is

straightforward: on this value, one-third candidates are pruned with almost no influence on the

model performance in terms of precision, recall, and the F1 score.

9.5 Case Study

To further demonstrate the effectiveness of incorporating knowledge into pronoun coreference res-

olution, two examples are provided for detailed analysis. The prediction results of the End2end

model and our complete model are shown in Table 9.4. There are different challenges in both ex-
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Figure 9.6: Effect of different pruning thresholds on model performance. With the threshold in-
creasing, the precision increases while the recall and F1 drop.

amples. In Example A, “Jesus,” “man,” and “my son” are all similar (male) noun phrases matching

the target pronoun “He.” The End2end model predicts all of them to be correct references because

their context provides limited help in distinguishing them. In Example B, the distance between “an

accident” and the pronoun “it” is too far. As a result, the “None” result from the End2end model

indicates that the contextual information is not enough to make the decision. As a comparison, in

our model, integrating external knowledge can help to solve such challenges, e.g., for Example A,

SP knowledge helps when Plurality and AG cannot distinguish all candidates.

To clearly illustrate how our model leverages the external knowledge, we visualize the knowl-

edge attention of the correct reference against other candidates13 via heatmaps in Figure 9.7. Two

interesting observations are drawn from the visualization. First, given two candidates, if they are

significantly different in one feature, our model tends to pay more attention to that feature. Take

AG as an example, in Example A, the AG features of all candidates consistently match the pronoun

“he” (all male/neutral). Thus the comparison between “my son” and all candidates pay no atten-

tion to the AG feature. While in Example B, the target pronoun “it” cannot describe human, thus

“father” and “friend” are 0 on the AG feature while “hospital” and “accident” are 1. As a result,

the attention module emphasizes AG more than other knowledge types. Second, The importance

of SP is clearly shown in these examples. In example A, Plurality and AG features cannot help,

13Only candidates entered the second layer are considered.
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Example A Example B

Sentences ... (A large group of peo-
ple) met (Jesus). (A man in
the group) shouted to him:
“(Teacher), please come and
look at (my son). He is the
only child I have” ...

... (My neighbor) told me that there was
(an accident), and everyone else was intact, except
(his father), who was in (hospital) for fractures. I
comforted him first and asked (my friend) to rush
me to (the hospital). (My neighbor) showed me the
police report at (the hospital), which indicated it was
all my neighbor’s fault. ...

Pronoun He it
Candidate
NPs

A large group of people, Je-
sus, A man in the group,
Teacher, my son.

My friend, an accident, his father, hospital, my
friend, the hospital, My neighbor, the hospital.

End2end Jesus, A man in the group,
my son

None

Our Model my son an accident

Table 9.4: The comparison of End2end and our model on two examples drawn from the test data.
Pronouns are marked as blue bold font. Correct references are indicated in green underline font
and other candidates are indicated with brackets. “None” refers to that none of the candidates is
predicated as the correct reference.

the attention module weights higher on SP because “son” appears 100 times as the argument of the

parsed predicate “child” in the SP knowledge base, while other candidates appear much less at that

position. In example B, as mentioned above, once AG helps filtering “hospital” and “accident,”

SP plays an important role in distinguishing them because “accident” appears 26 times in the SP

knowledge base as the argument of the “fault” from the results of the parser, while “hospital” never

appears at that position.
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Figure 9.7: Heatmaps of knowledge attention for two examples, where in each example the knowl-
edge attention weights of the correct references against other candidates are illustrated. Darker
color refers to higher weight on the corresponding knowledge type.
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CHAPTER 10

AN END-TO-END STRUCTURED KNOWLEDGE
ENHANCED PCR SYSTEM

A significant limitation of the aforementioned feature-based approach is that it cannot handle com-

plex knowledge because we cannot easily convert them into features. Moreover, the feature compu-

tation phase still requires the support of either gold mentions or other mention detection modules,

which could bring error propagation.

To address these limitations, we propose a novel end-to-end model that learns to resolve pro-

noun coreferences with general knowledge graphs (KGs). Different from conventional approaches,

our model does not require to use featurized knowledge. Instead, we directly encode knowledge

triplets, the most common format of modern knowledge graphs, into our model. In doing so, the

learned model can be easily applied across different knowledge types as well as domains with

adopted KG. Moreover, to address the knowledge matching issue, we propose a knowledge atten-

tion module in our model, which learns to select the most related and helpful knowledge triplets

according to different contexts. Experiments conducted on general (news) and in-domain (medical)

cases shows that the proposed model outperforms all baseline models by a great margin. Additional

experiments with the cross-domain setting further illustrate the validity and effectiveness of our

model in leveraging knowledge smartly rather than fitting with limited training data.

10.1 The Task

Different from the setting in Chapter 9, we do not require the gold mentions. Thus we can formally

define the task as follows. Given a text D, which contains a pronoun p, the goal is to identify all

the mentions that p refers to. We denote the correct mentions p refers to as c ∈ C, where C is the

correct mention set. Similarly, each candidate span is denoted as s ∈ S, where S is the set of all

candidate spans. Note that in the case where no golden mentions are annotated, all possible spans

in D are used to form S. To exploit knowledge, we denote the knowledge set as G, instantiated by
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Figure 10.1: The overall framework of our approach to pronoun corference resolution with KGs.
k1,...,km represent the retrieved knowledge for each span in the black boxes. Dotted box represents
the span representation module, which generates a contextual representation for each span. Dashed
box represents the knowledge selection module, which selects appropriate knowledge based on
the context and generates an overall knowledge representation for each span. F(·) is the overall
coreference scoring function.

multiple knowledge triplets.1 The task is thus to identify C out of S with the support of G. Formally,

it optimizes

J =

∑
c∈C e

F(c,p,G,D)∑
s∈S e

F(s,p,G,D)
, (10.1)

where F(·) is the overall scoring function2 of p referring to s in D with G. The details of F are

illustrated in the following section.

10.2 Model

The overall framework of our model is shown in Figure 10.1. There are several layers in it. At the

bottom, we encode all mention spans (s) and pronouns (p) into embeddings so as to incorporate

1Each triplet contains a head, a tail, and a relation from the head to the tail.
2We omit G and D in the rest of this chapter for simplicity.
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Figure 10.2: The structure of the span representation module. BiLSTM and attention are employed
to encode the contextual information.

contextual information. In the middle layer, for each pair of (s, p), we use their embeddings to

select the most helpful knowledge triplets from G and generate the knowledge representation of

s and p. At the top layer, we concatenate the textual and knowledge representation as the final

representation of each s and p, and then use this representation to predict whether there exists the

coreference relation between them.

10.2.1 Span Representation

Contextual information is crucial to distinguish the semantics of a word or phrase, especially for

text representation learning [150, 148]. In this work, a standard bidirectional LSTM (BiLSTM)

[54] model is used to encode each span with attentions [4], which is similar to the one used in Lee

et al. [69]. The structure is shown in Figure 10.2. Let initial word embeddings in a span si be

denoted as x1, ..., xT and their encoded representation be x∗1, ..., x∗T . The weighted embeddings of

each span x̂i is obtained by

x̂i =
T∑
t=1

at · xt, (10.2)

where at is the inner-span attention computed by

at =
eαt∑T
k=1 e

αk
, (10.3)
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Figure 10.3: The structure of the knowledge attention module. The joint representation of the
candidate span and pronoun is used to select knowledge for s and p.

where αt is a standard feed-forward neural network3 αt = NNα(x∗t).

Finally, the starting (x∗start) and ending (x∗end) embedding of each span is concatenated with the

weighted embedding (x̂i) and the length feature (φ(i)) to form its final representation e:

ei = [x∗start, x∗end, x̂i,φ(i)]. (10.4)

Thus the span representation of s and p are marked as es and ep, respectively.

10.2.2 Knowledge Representation

For each candidate span s and the target pronoun p, different knowledge from a KG can be extracted

with various methods. For simplicity and generalization consideration, we use the string match in

our model for knowledge extraction. Specifically, for each triplet t ∈ G where the head and tail

of t are both lists of words, if its head is the same as the string of s, we consider it to be a related

triplet. Therefore, we encode the information of t by the averaging embeddings of all words in its

tail. For example, if s is “the apple” and the knowledge triplet (“the apple,” IsA, “healthy food”) is

found by searching the KG, we represent this relation from the averaged embeddings of “healthy”

and “food.” Consequently, for s and p, we denote their retrieved knowledge set as Ks and Kp

respectively, where Ks contains ms related knowledge embeddings k1,s, k2,s, ..., kms,s and Kp

containsmp of them k1,p, k2,p, ..., kmp,p.

3We use NN to present feed-forward neural networks.
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To incorporate the aforementioned knowledge embeddings into our model, we face a challenge

that there are a huge number of such embeddings while most of them are useless in certain contexts.

To solve it, a knowledge attention module is proposed to select the appropriate knowledge.

For each pair of (s, p), as shown in Figure 10.3, we first concatenate es and ep to get the overall

(span, pronoun) representation es,p, which is used to select knowledge for both s and p. Taking

that for s as example, we compute the weight of each ki ∈ Ks by

wi =
eβki∑

kj∈Ks
e
βkj

, (10.5)

where βk = NNβ([es,p, k]). As a result, the knowledge of s is summed by

os =
∑

ki∈Ks

wi · ki. (10.6)

to represent the overall knowledge for s. A similar process is also conducted for p with its knowl-

edge representation op.

10.2.3 Scoring

The final score of each pair (s, p) is computed by

F(s,p) = fm(s) + fc(s,p), (10.7)

where fm(s) = NNm([es, os]) is the scoring function for s to be a valid mention and fc(s,p) =

NNc([en, on, ep, op, en � ep, on � op]) is the scoring function to identify whether there exists a

coreference relation from p to s, with � denoting element-wise multiplication.

After getting the coreference score for all mention spans, we adopt a softmax selection on the

most confident candidates for the final prediction, which is formulated as

F̂(s,p) =
eF(s,p)∑
si∈S e

F(si,p) . (10.8)

where candidates with score F̂ higher than a threshold t are selected.
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10.3 Experiments

Experiments are illustrated in this section.

10.3.1 Datasets

Two datasets are used in our experiments, where they are from two different domains:

• CoNLL: The CoNLL-2012 shared task [117] corpus, which is a widely used dataset selected

from the Ontonotes 5.0.4

• i2b2: The i2b2 shared task dataset [163], consisting of electronic medical records from two

different organizations, namely, Partners HealthCare (Part) and Beth Israel Deaconess medical

center (Beth). All records have been fully de-identified and manually annotated with corefer-

ences.

We split the datasets into different proportions based on their original settings. Three types of

pronouns are considered in this chapter following Ng [100], i.e., third personal pronoun (e.g., she,

her, he, him, them, they, it), possessive pronoun (e.g., his, hers, its, their, theirs), and demonstra-

tive pronoun (e.g., this, that, these, those). Table 10.1 reports the number of the three types of

pronouns and the overall statistics of the experiment datasets with proportion splittings. Following

conventional approaches [100, 74], for each pronoun, we consider its candidate mentions from the

previous two sentences and the current sentence it belongs to. According to our selection range of

the candidate mentions, each pronoun in the CoNLL data and i2b2 data has averagely 1.3 and 1.4

correct references, respectively.

10.3.2 Knowledge Resources

As mentioned in previous sections, our model is designed to leverage general KGs, where it takes

triplets as the input of knowledge representations. For all knowledge resources, we format them as

triplets and merge them together to obtain the final knowledge set. Different knowledge resources

are introduced as follows.

4https://catalog.ldc.upenn.edu/LDC2013T19
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Dataset TP Poss Dem All

CoNLL
train 21,828 7,749 2,229 31,806
dev 2,518 1,007 222 3,747
test 2720 1,037 321 4,078

i2b2
train 2,024 685 270 2,979
test 1,244 367 166 1,777

Overall 30,334 10,845 3,208 44,387

Table 10.1: Statistics of the two datasets. “TP,” “Poss,” and “Dem” refer to third personal, posses-
sive, and demonstrative pronouns, respectively.

Commonsense knowledge graph (OMCS). We use the largest commonsense knowledge base,

the open mind common sense (OMCS) [145]. OMCS contains 600K crowd-sourced commonsense

triplets such as (food, UsedFor, eat) and (wind, CapableOf, blow to east). All relations in OMCS

are human-defined and we select those highly-confident ones (confidence score larger than 2) to

form the OMCS KG, with 62,730 triplets.

Medical concepts (Medical-KG). Being part of the i2b2 contest, the related knowledge about

medical concepts such as (the CT scan, is, test) and (intravenous fluids, is, treatment) are provided.

The annotated triplets are used as the medical concept KG, which contains 22,234 triplets.

Linguist features (Ling). In addition to manually annotated KGs, we also consider linguist fea-

tures, i.e., plurality and animacy & gender (AG), as one important knowledge resources. Stanford

parser5 is employed to generate plurality, animacy, and gender markups for all the noun phrases, so

as to automatically generate linguistic knowledge (in the form of triplets) for our data. Specifically,

the plurality feature denotes each s and p to be singular or plural. The animacy & gender (AG)

feature denotes whether the n or p is a living object, and being male, female, or neutral if it is alive.

For example, a mention “the girls” is labeled as plural and female; we use triplets (“the girls,”

plurality, Plural) and (“the girls,” AG, female) to represent them. As a result, we have 40,149 and

40,462 triplets for plurality and AG, respectively.

Selectional Preference (SP). Selectional preference [53] knowledge is employed as the last knowl-

edge resource, which is the semantic constraint for word usage. SP generally refers to that, given a

predicate (e.g., verb), people have the preference for the argument (e.g., its object or subject) con-

5https://stanfordnlp.github.io/CoreNLP/
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nected. To collect SP knowledge, we first parse the English Wikipedia6 with the Stanford parser

and extract all dependency edges in the format of (predicate, argument, relation, number), where

predicate is the governor and argument the dependent in each dependency edge.7 Following [130],

each potential SP pair is measured by a posterior probability

Pr(a|p) =
Countr(p,a)
Countr(p)

, (10.9)

where Countr(p) and Countr(p,a) refer to how many times p and the predicate-argument pair

(p, a) appear in the relation r, respectively. In our experiment, if Pr(a|p) > 0.1 andCountr(p,a) >

10, we consider the triplet (p, r, a) (e.g., (“dog,” nsubj, “barks”)) a valid SP relation. Finally, we

select two SP relations, nsubj and dobj, to form the SP knowledge graph, including 17,074 and

4,536 frequent predicate-argument pairs for nsubj and dobj, respectively.

10.3.3 Baselines

We compare with the following baselines, including three widely used pre-trained models:

• Deterministic model [123], which is an unsupervised model and leverages manual rules to detect

coreferences.

• Statistical model [18], which is a supervised model and trained on manually crafted entity-level

features between clusters and mentions.

• Deep-RL model [19], which uses reinforcement learning to directly optimize the coreference

matrix instead of the loss function of supervised learning.

The above models are included in the Stanford CoreNLP toolkit.8 We also include a state-of-the-art

end-to-end neural model as one of our baselines:

• End2end [70], which is the current state-of-the-art model performing in an end-to-end manner

and leverages both contextual information and a pre-trained language model [114].

6https://dumps.wikimedia.org/enwiki/
7In the Stanford parser, an “nsubj” edge is created between its predictive and subject when a verb is a linking verb
(e.g., am, is); the predicative is thus treated as the predicate for the subject (argument).

8https://stanfordnlp.github.io/CoreNLP/coref.html
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We use their released code.9 In addition, to show the importance of incorporating knowledge, we

also experiment with two variations of our model:

• Without KG removes the KG component and keeps all other components in the same setting as

that in our complete model.

• Without Attention removes the knowledge attention module and concatenates all the knowledge

embeddings. All other components are identical as our complete model.

10.3.4 Implementation

Following the previous work [70], we use the concatenation of the 300d GloVe embeddings [113]

and the ELMo [114] embeddings as the initial word representations for computing span repre-

sentations. For knowledge triplets, we use the GloVe embeddings to encode tail words in them.

Out-of-vocabulary words are initialized with zero vectors. The hidden state of the LSTM mod-

ule is set to 200, and all the feed-forward networks have two 150-dimension hidden layers. The

selection thresholds are set to 10−2 and 10−8 for the CoNLL and i2b2 dataset, respectively.

For model training, we use cross-entropy as the loss function and Adam [64] as the optimizer.

All the aforementioned hyper-parameters are initialized randomly, and we apply dropout rate 0.2

to all hidden layers in the model. For the CoNLL dataset, the model training is performed with up

to 100 epochs, and the best one is selected based on its performance on the development set. For

the i2b2 dataset, because no dev set is provided, we train the model up to 100 epochs and use the

final converged one.

10.3.5 Results

Table 10.2 reports the performance of all models, with the results for CoNLL and i2b2 in (a) and

(b), respectively. Overall, our model outperforms all baselines on two datasets with respect to all

pronoun types. There are several interesting observations. In general, the i2b2 dataset seems sim-

pler than the CoNLL dataset, which might because that i2b2 only involves clinical narratives and its

training data is highly similar to the test data. As a result, all neural models perform dramatically

good, especially on the third personal and possessive pronouns. In addition, we also notice that

9https://github.com/kentonl/e2e-coref
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(a) CoNLL

Model
Third Personal Possessive Demonstrative All
P R F1 P R F1 P R F1 P R F1

Deterministic 25.5 58.9 35.6 22.9 64.3 33.8 3.4 5.7 4.2 23.4 57.0 33.4
Statistical 25.8 62.1 36.5 28.9 64.9 40.0 9.8 6.3 7.6 25.4 59.3 36.5
Deep-RL 78.6 63.9 70.5 73.3 68.9 71.0 3.7 2.9 5.5 76.4 61.2 68.0

End2end 70.6 75.7 73.1 73.0 76.2 74.6 58.4 17.6 27.0 71.1 72.1 71.6

Without KG 78.2 72.4 75.2 80.0 66.4 72.6 46.7 62.5 53.4 75.7 70.1 72.8
Without Attention 76.6 77.9 77.2 79.0 73.5 76.2 42.4 72.6 53.5 73.6 76.4 74.9
Our Complete Model 78.8 77.8 78.1 80.7 72.5 76.4 45.3 66.7 53.9 75.9 75.6 75.7

(b) i2b2

Model
Third Personal Possessive Demonstrative All
P R F1 P R F1 P R F1 P R F1

Deterministic 25.7 57.4 35.5 25.2 61.6 35.7 6.6 4.0 5.0 25.1 54.0 34.3
Statistical 19.3 35.9 25.1 25.7 50.5 34.0 6.7 4.5 5.4 20.5 36.6 26.3
Deep-RL 78.2 48.0 59.5 78.6 57.7 66.5 9.1 5.1 9.6 77.8 46.3 58.1

End2end 95.0 93.4 94.2 95.3 96.0 95.7 74.8 52.5 61.7 93.9 90.7 92.3

Without KG 96.8 95.9 96.3 97.1 97.5 97.3 66.5 68.2 67.3 94.3 94.0 94.2
Without Attention 96.1 97.2 96.6 96.3 98.2 97.2 66.7 77.8 71.8 93.4 95.9 94.6
Our Complete Model 97.5 96.3 96.9 98.5 97.8 98.2 71.9 72.2 72.0 95.6 94.7 95.2

Table 10.2: The performance of pronoun coreference resolution with different models on two eval-
uation datasets. Precision (P), recall (R), and the F1 score are reported, with the best one in each
F1 column marked as bold.

it is more challenging for all models to resolve demonstrative pronouns (e.g., this, that) on both

datasets, because such pronouns may refer to complex things and occur with low frequency.

Moreover, there are significant gaps in the performance of different models, with the follow-

ing observations. First, models with manually defined rules or features, which cannot cover rich

contextual information, perform poorly. In contrast, deep learning models (e.g., End2end and our

proposed models), which leverage text representations for context, outperform other approaches

by a great margin, especially on the recall. Second, adding knowledge in an appropriate manner

within neural models is helpful, which is supported by that our model outperforms the End2end

model and the Without KG one on both datasets, especially CoNLL, where the external knowledge

plays a more important role. Third, the knowledge attention module ensures our model to predict

more precisely, which also results in the overall improvement on F1. To summarize, the results
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CoNLL i2b2
F1 ∆ F1 F1 ∆ F1

The Complete Model 75.7 - 95.2 -

–OMCS 74.8 -0.9 95.1 -0.1
–Medical-KG 74.5 -1.2 94.6 -0.6
–Ling 73.8 -1.9 94.9 -0.3
–SP 74.0 -1.7 94.7 -0.5

Table 10.3: The performance of our model with removing different knowledge resources. The F1
of each case and the difference of F1 between each case and the complete model are reported.

suggest that external knowledge is important for effectively resolving pronoun coreference, where

rich contextual information determines the appropriate knowledge with a well-designed module.

10.4 Analysis

Further analysis is conducted in this section regarding the effect of different knowledge resources,

model components, and settings. Details are illustrated as follows.

10.4.1 Ablation Study

We ablate different knowledge for their contributions in our model, with the results reported in

Table 10.3. It is observed that all knowledge resources contribute to the final success of our model,

where different knowledge types play their unique roles in different datasets. For example, the

Ling knowledge contributes the most to the CoNLL dataset while the medical knowledge is the

most important one for the medical data.

10.4.2 Effect of the Selection Threshold

We experiment with different thresholds t for the softmax selection. The effects of t against overall

performance are shown in Figure 10.4. In general, with the increase of t, fewer candidates are

selected. Therefore, the overall precision increases and the recall drops. Consider that both the

precision and recall are important for resolving pronoun coreference, we select different thresholds

for different datasets to ensure the balance between precision and recall. In detail, for the CoNLL
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Figure 10.4: Effect of different softmax selection thresholds with respect to our model performance
on two datasets. In general, with the threshold becoming larger, less candidates are selected, the
precision thus increases while the recall drops.

Model Setting CoNLL i2b2

End2end
Original 71.6 92.3

+ Gold mention 77.8 94.4

Our Model
Original 75.7 95.2

+ Gold mention 80.7 96.0

[183] + Gold mention 79.9 -

Table 10.4: Influence of gold mentions. F1 scores on different test sets are reported. Adding
human-annotated gold mentions help both the End2end and our model. Best performed model are
indicated with the bold font.

dataset, we set r = 10−2 to select the most confident predictions; and for the i2b2 dataset, we set

r = 10−8 so as to keep more predictions.

10.4.3 Effect of Gold Mentions

The effect of adding gold mentions is shown in Table 10.4. Providing gold mentions to the End2end

model can significantly boost its performance by 6.2 F1 and 2.1 F1 on the CoNLL and i2b2 dataset,

respectively. Yet, the performance gain from gold mentions is less for our model. Such results

clearly illustrate that our model is able to benefit the mention detection with the help of KG incor-

poration. Besides that, with the help of gold mentions, our model achieves the comparable (slightly
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Model Training data
Test data

CoNLL i2b2

End2end
CoNLL 71.6 75.2

i2b2 20.0 92.3

Our Model
CoNLL 75.7 80.9

i2b2 42.7 95.2

Table 10.5: Cross-domain performance of different models. F1 on the target domain test sets are
reported.

better) performance with the context-and-knowledge model [183]. As their features are originally

designed for CoNLL, we only report the performance on CoNLL in Table 10.4. As we also in-

cluded one new challenging pronoun type, the demonstrative pronoun, the overall performance of

their model is lower than the one reported in the original paper. The reason of our model being

better is that more knowledge resources (e.g., OMCS) can be incorporated into our model due to its

generalizable design. Moreover, it is more difficult for their method [183] to incorporate mention

detection into the model, because in this case we need to enumerate all mention spans and generate

corresponding features for all spans. which is expensive and difficult to acquire.

10.4.4 Cross-domain Evaluation

Considering that neural models are intensive data-driven and normally restricted by data nature,

they are not easily applied in a cross-domain setting. However, if a model is required to perform

in real applications, it has to show promising performance on those cases out of the training data.

Herein we investigate the performance of different models with training and testing in different

domains, with the results reported in Table 10.5. Overall, all models perform significantly worse if

they are used cross domains. Specifically, if we train the End2end model on the CoNLL dataset and

test it on the i2b2 dataset, it only achieves 75.2 F1. As a comparison, our model can achieve 80.9

F1 in the same case. This observation confirms the capability of knowledge where our model is

able to handle. A similar observation is also drawn for the reversed case. However, even though our

model outperforms the End2end model by 22.7 F1 from i2b2 to CoNLL, its overall performance

is still poor, which might be explained by that the i2b2 is an in-domain dataset and the knowledge

contained in its training data is rarely useful for the general (news) domain dataset. Nevertheless,

this experiment shows that the generalization ability of deep models is still crucial for building a
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Example A Example B

Sentence He walks into the room with one
magazine and drops it on the
couch.

... A small area of erythema
around his arm ... This will be
treated empirically.

Prediction magazine erythema

Knowledge (“magazine,” dobj, “drop”) (“erythema,” IsA, “disease”)

Table 10.6: The case study on two examples from the test data, i.e., A: from the CoNLL and B:
from the i2b2. Pronouns and correct mentions are marked by red bold and blue underline font
respectively. Knowledge triplets used for them are listed in the bottom row.

successful coreference model, and learns to use knowledge is a promising solution to it.

10.5 Case Study

To better illustrate the effectiveness of incorporating different knowledge in this task, two examples

are provided for the case study in Table 10.6. In example A, our model correctly predicts that “it”

refers to the “magazine” rather than the “room,” because we successfully retrieve the knowledge

that compared with the “room,” the “magazine” is more likely to be the object of drop. In example

B, even though the distance between “erythema” and “This” is relatively far,10 our model is able to

determine the coreference relation between them because it successfully finds out that “erythema”

is a kind of disease, while a lot of diseases appear as the context of “be treated” in the training data.

10We omit the intermediate part of the long sentence in the table for a clear presentation.
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CHAPTER 11

EXPLORING A GENERAL COMMONSENSE
INFERENCE FRAMEWORK

In previous chapters, we have discussed potential solutions for applying structured knowledge for

a fundamental natural language understanding task that requires commonsense reasoning, pronoun

coreference resolution. Besides the pronoun coreference resolution, many commonsense reasoning

datasets [133, 159, 179, 80] have been proposed to encourage research on commonsense reasoning.

Even though they may target different formats, knowledge types, or modalities, they often follow a

standard supervised learning setting, and aim at helping machines to solve a specific commonsense

task with the training data. Recently, with the help of pre-trained language models (e.g., BERT [25])

and large-scale annotation, the community has made impressive progress on these tasks. However,

models do not generalize well across tasks [61].

In this chapter, considering that there could be enormous kinds of commonsense reasoning

tasks and it is infeasible to annotate a huge dataset for each of them, we are interested in exploring

a universal solution for all of them at the same time. Specifically, based on the assumption that even

though different tasks may have different formats, they share the limited kinds of inference over

the commonsense knowledge, we propose to convert different commonsense tasks into a unified

format (i.e., question answering). For each of the question-answer pair, we equip it with a small

supporting commonsense knowledge graph. On top of that, we can learn the correct inference

over commonsense rather than acquire the new commonsense. Specifically, for each question-

answer pair, we plan to first extract the key eventualities out of it and then find a sub-graph of an

external commonsense knowledge base that covers the relevant knowledge.1 After that, we will

conduct human annotation to verify whether the auto-extracted knowledge can be used to answer

this question or not. We name this task as commonsense knowledge based question answering

(CKBQA). An example is shown in Figure 11.1, in which we denote key eventualities from the

question with purple and orange boxes and the correct inference path over the graph with the yellow

1Currently, as no existing complete commonsense knowledge graph that has the perfect coverage, we only keep
questions that we can find the relevant commonsense knowledge.
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Figure 11.1: CKBQA demonstration.

oval. So, in CKBQA, we expect the model to learn to resolve “he” to “John” rather than “Bob”

by knowing that “sleep” and “rest on a bench” can both be caused by “being tired” and thus it is

more likely for the subject of these two events to be the same person. Experiments on CKBQA

show that even though inference over commonsense knowledge is challenging, models can learn

to conduct simple inference after training with a few examples. Another observation is that the

learned model demonstrates the generalization ability across tasks, which was not observed in

previous commonsense reasoning models.

11.1 Problem Overview

In CKBQA, given a question Q, a supporting knowledge graph G, and two candidate answers A1

and A2, we are interested in two tasks: (1) Whether the model can predict the correct answer? (2)

Whether the model can predict “I do not know (IDK)” when G cannot help solve Q correctly?

11.2 CKBQA

In this section, we introduce the preparation details of CKBQA, including the commonsense knowl-

edge base (KB) selection, the commonsense task selection, format unification, and supporting

knowledge graph extraction.
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ConceptNet ATOMIC ASER

Scale middle middle large
Quality high high middle

Relation Richness middle small large
Relation Weight binary binary weighted

Table 11.1: Comparison of different commonsense knowledge bases from four perspectives: Scale,
Quality, Relation Richness, and Relation Weight.

11.2.1 Commonsense KB Selection

As aforementioned, different commonsense KBs have different properties and strengths. For ex-

ample, ConceptNet [84] leverages the human annotation to collect 600 thousand pieces of com-

monsense about 34 human-defined relations (e.g., “Cat”-HasA-“Tail” and “Eat”-HasPrerequisite-

“Being hungry”). Similar to ConceptNet, ATOMIC [139] also leverages human annotation to

collect commonsense knowledge about daily events. In total, ATOMIC contains 310 thousand

triplets about 9 different event relations (e.g., “Be caused by” and “Result in”). As a comparison,

ASER is automatically extracted and contains commonsense knowledge about 194 million eventu-

alities. The nodes in ASER are eventualities, and edges are weighted discourse relations (e.g., “I

am tired”→Result (3)→“I rest on a bench”). The weights in brackets reflect humans’ selectional

preference over daily eventualities.

A detailed comparison of aforementioned commonsense KBs are presented in Table 11.1. We

choose ASER as the supporting knowledge graph for the following reasons. First, commonsense

is more complex than either the 34 human-defined relations in ConceptNet or the 9 relations in

ATOMIC. As a comparison, ASER uses a linguistic relation based representation format, which

can cover richer commonsense relations. As discussed in Chapter 5, the selectional preference

over linguistic relations stored in ASER can effectively cover knowledge in other commonsense

KBs (i.e., ConceptNet). Second, commonsense is a kind of preference rather than fixed factorial

knowledge [60, 168, 131]. For example, compared with “being tasty,” “being hungry” is more

likely to be the cause of eating, but not every time one feels hungry, one will eat. The weighted

representation format of ASER can naturally be used to reflect such preference.
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11.2.2 Commonsense Task Selection

We select the following four commonsense reasoning tasks based on two consideration: (1) We

want to cover more diverse formats; (2) The selected dataset should be of high quality.

1. HardPCR: The hard pronoun coreference resolution (HardPCR) task is one of the most famous

commonsense reasoning tasks. For each question, a target pronoun and two candidate mentions

are provided and the task is to select the correct mention that the pronoun refers to. Careful

expert annotations were conducted to get rid of the influence of all simple linguistic rules and

ask the models to solve the problem with commonsense reasoning. In CKBQA, we include

instances from WSC [72], DPR [126], and WinoGrande [136].

2. CommonsenseQA [159]: CommonsenseQA is a commonsense question answering dataset. For

each question-answer pair, four relevant but wrong concepts are used as the other candidates,

and the models are required to select the correct one out of five candidates. In CKBQA, we

randomly sample a negative answer to make it a binary choice task, which is consistent with

other datasets.

3. COPA [133]: COPA focuses on evaluating whether models can understand the causality between

events or not. For each head event, two candidate tail events are provided, and models are asked

to predict the one caused by or the reason of the head event.

4. ATOMIC [139]: The last one is the commonsense knowledge base completion, which aims

at predicting the tail node given head and relations to populate it. In CKBQA, We focus on

predicting edges of ATOMIC.

11.2.3 Format Unification

After selecting the base commonsense datasets, motivated by recent works [63, 20, 171, 27], we

then unify all selected questions into the QA format. For the hard pronoun coreference resolu-

tion task (i.e., WSC, DPR, and Winogrande), as the original dataset has already provided two

candidates, all we need to do is automatically creating a question regarding the target pronoun.

Specifically, we first extract the eventuality that contains the target pronoun and then determine

whether the pronoun refers to a person or an object. If it is a person, we will ask who participates
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Task Name Original Assertion Transformed Question Answer

Hard PCR The fish ate the worm. It
was hungry.

The fish ate the worm. It was
hungry. What was hungry?

(A) Fish; (B) Worm

CommonsenesQA What is a place that some-
one can go buy a teddy
bear?

What is a place that someone
can go buy a teddy bear?

(A) Toy store; (B)
Shelf

COPA I drank from the water
fountain.

I drank from the water foun-
tain. What was the cause of
this?

(A) I was thirsty.; (B) I
felt nauseous.

ATOMIC PersonX buys the bike. Before PersonX buys the
bike, what did PersonX
want?

(A) To be social.; (B)
To have transportation.

Table 11.2: Demonstration of the original assertion, transformed questions, and answers. Cor-
rect and wrong answers are indicated with blue and red, respectively. More examples are in the
Appendix.

in that event. Otherwise, we will ask what participates in that event. For CommonsenseQA, as it

is already in the question-answering format, we do not need to change its format. For COPA and

ATOMIC, as they are essentially predicting the relations between two eventualities (e.g., “PersonX

eats”-Causes-“PersonX is full”), we randomly sample a tail eventuality (e.g., “PersonX is hungry”)

as the negative sample and ask the model to select the correct one. For each type of relation, we

write a simple pattern to generate the question. For example, for the “Causes” relation, we will ask

“What can be caused by ‘PersonX is hungry’?” Demonstrations of instances in original datasets

and their transformed questions and candidate answers are presented in Table 11.2.

11.2.4 Supporting Graph Extraction

For each question, we need to obtain a sub-graph from ASER such that it contains the relevant com-

monsense knowledge about this question. The sub-graph extraction process includes the following

three steps: Data Pre-processing, Eventuality Matching, and Graph Extraction.

Data Pre-processing: For each question and the associated candidate answers, to find the rele-

vant knowledge about both the questions and answers, we first try to replace the question words

(e.g., “What”) with the two candidate answers such that it becomes two declarative sentences. For

instance, if the question is “The fish ate the worm. It was hungry. Who is hungry?” and the candi-

dates are “Fish” and “Worm”, we will convert the question into two declarative sentences: “Fish is

hungry” and “Worm is hungry.” After that, to better align with ASER, we leverage the eventuality
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extraction tool released by ASER [185] to extract eventualities out of those converted declarative

sentences. After the pre-processing, we will get a set of relevant eventualities for each QA pair

(i.e., “Fish ate the worm,” “Fish is hungry,” and “Worm is hungry”).

Eventualities Matching: After extracting key eventualities out of the questions, we then map

them to nodes in ASER. Considering that each eventuality may have multiple words and it is often

hard to find an exact match, we adopt a soft matching technique. For each extracted eventuality

and node in ASER, we treat them as a sentence and get the corresponding representations with

Sentence-BERT [127]. For each input sentence, Sentence-BERT will return a vector to represent

its overall semantics in the Euclidean space. Closer distance between two vectors indicates that the

two sentences are more similar to each other. In our current pipeline, we use the cosine similarity

of the Sentence-BERT representations to indicate the similarity between two eventualities.2 Since

there are 194 million eventualities in ASER, it is infeasible to compute the cosine similarity between

eventualities pair by pair. Thus for each extracted eventuality, we first apply Faiss [58], which is

a large-scale similarity-based matching algorithm that first clusters all ASER eventualities in the

vector space to increase the matching efficiency, to find the top 60 eventualities in ASER. After

that, we can then sort the found 60 eventualities based on the cosine similarity to find the top K

similar eventualities. We set K to be 1 for most datasets while 5 for COPA. This is mainly because

of the small size of COPA. If we set K to be 1 for COPA, we will get very few examples left. On

average, it takes 25 seconds to retrieve relevant eventualities for each question.

Graph Extraction: In the last step, we construct the sub-graph. We denote the extracted m even-

tualities as e1, e2, ..., em, and for each of them we find K similar eventualities from ASER. The re-

sulting matched eventuality sets are denoted as E1,E2, ...,Em. For any pair of eventualities e ∈ Ei

and e′ ∈ Ej, if there exist a one-hop or two-hop connection in ASER between e and e′ and i 6= j, we

will keep that path. After merging all paths together, we will get the final sub-graph. On average,

it takes less than two seconds for us to construct such a graph for each question.

11.3 Annotation

In this section, we introduce the annotation details.

2We also tried other matching techniques such as string match, ROUGE [81], and BLEURT [144]. They are either
not accurate or too slow for our scale.
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Figure 11.2: An example of the used survey.

11.3.1 Survey Design

The annotation goal is to determine whether the supporting graph can help answer the question

or not. Thus, for each QA pair, we present the question, candidate answers, and the supporting

sub-graph to annotators, and then ask them two questions: (1) What is the correct answer for this

question; (2) Whether the provided commonsense knowledge contains all the essential common-

sense for answering this question. The purpose of the first question is to assess the annotation

quality. A survey example is shown in Figure 11.2. In each survey, we also provide detailed

instructions and examples to help annotators understand our task.

11.3.2 Annotation Details

We first employ annotators from Amazon Mechanical Turk to provide annotations. To improve the

annotation quality, we require the annotators to be English native speaker and to have an overall

acceptance rate above 90%. For each question, we invite five annotators to provide the annotations.

Considering that our task is relatively challenging for laymen because it does not only involve

multiple kinds of commonsense tasks but also involves finding the essential inference path over

a graph, we also invite domain experts to annotate the same survey. Specifically, we invited 30

students to provide the annotation. After the careful instruction, they can clearly understand the

task and requirements. As a result, they can provide higher quality annotation. For each QA pair,

we randomly assign it to three different students. To compare these annotation approaches, we show
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Crowd-sourcing Experts

Accuracy on Q1 0.65 0.90
IAA on Q1 0.56 0.91
IAA on Q2 0.63 0.87

Table 11.3: Annotation Quality. Q1 and Q2 indicate the original question and the question asking
whether the knowledge in the sub-graph is enough or not. IAA is the inter-annotator agreement.

Task Name # Instances Average Sub-graph Size (# Edges) K # Helpful Instances

Hard PCR 2,030 3.03 1 185
CommonsenseQA 530 3.30 1 47
COPA 103 2.73 5 27
ATOMIC 5,655 2.77 1 914

Total 8,318 2.87 - 1,173

Table 11.4: CKBQA statistics.

the average accuracy on the first question as well as the inter-annotator agreement on both questions

in Table 11.3. The results show that experts have significantly higher accuracy and agreement than

crowd-sourcing workers. This makes sense because unlike an ordinary crowd-sourcing task, our

task requires complex thinking and is more challenging for ordinary people. Considering this, we

choose to use the expert annotation as the final label.

11.3.3 CKBQA Statistics

We report the number of total instances, average supporting graph size, and the number of helpful

instances of CKBQA in Table 11.4. In total, we collect 8,318 instances, and among which Hard

PCR and ATOMIC provide the most questions because their original datasets are much larger than

others. According to the annotation, 14.10% of the supporting knowledge graphs can be used to

answer the questions. Based on our analysis, annotators hold a very strict standard for whether

the supporting knowledge is helpful or not. More detailed statistics and case studies are in the

appendix. For each task, we randomly split the dataset into training, development, and testing set

with a standard 8:1:1 splitting. As a result, we get 6,656 training, 831 development, and 831 testing

instances.
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11.4 Experiments

In this section, we conduct experiments with the language model (LM) based multiple-choice (MC)

model. For each candidate answer, we concatenate it with the question and then feed it to a pre-

trained language model. After getting the sentence representation, a single layer neural network is

applied to predict the plausibility score. Candidates with the higher score will be selected. Specifi-

cally, we are interested in the following four settings:

1. Without Knowledge: For the baseline model, we follow the simplest multiple-choice setting

and use the question and answer as the input.

2. With Knowledge: To use the knowledge, we propose to convert the supporting KG into para-

graphs and use them as the additional context. As all edges in the graph are discourse relations,

we can convert each edge into a sentence (e.g., “I eat food because I am hungry (11)”) by replac-

ing the discourse relation with the most representative connectives3 (e.g., “because”) and putting

the edge weight into brackets. And then we can randomly concatenate sentences together to be a

paragraph. In this setting, we concatenate the knowledge, question, and candidates as the input.

3. Answer Only: To study the artifact in CKBQA, we add an “Answer Only” setting, where only

candidates are fed into models. Ideally, models should get the chance performance.

4. IDK: To study if the model can learn to distinguish whether the provided knowledge is helpful

or not, we add an “IDK” experiment. For each question, we add an additional candidate “I

do not know (IDK)” and ask the model to predict if the knowledge is labeled as “not helpful.”

We only report the performance whether the model could know the knowledge is helpful or

not, rather than the original task. In this setting, we randomly select the same number of “Not

Helpful” examples as the “Helpful” ones to make the dataset balanced.

We implement the experiments with Huggingface [170] and select BERT [25] and RoBERTa [85]

as the language models. We use Cross-Entropy as the loss function and Adam [64] as the optimiza-

tion method. All models are trained for 10,000 steps4 and the best-performing checkpoints on the

dev set are evaluated. We tried training with different training data scales to show the learning

curves of different settings. All other hyper-parameters are the same as the base LMs.

3All selected connectives are in the appendix.
4All models converge at 10,000 steps.
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(a) Without Knowledge (Questions, Answers) (b) With Knowledge (Questions, Knowledge,
Answers)

(c) Answer Only (Answers) (d) IDK (Questions, Knowledge, Answers)

Figure 11.3: Learning curves of different experiment settings. The model input under different
settings are in brackets.

11.5 Results Analysis

Experimental results are shown in Figure 11.3, from which we can make the following observa-

tions:

1. Comparing Figure 11.3 (a) and (b), we can find out that even though the auto-extracted knowl-

edge may be annotated as “not helpful,” they are still helpful. This is probably because some

knowledge graphs are annotated as “not helpful” because the annotators think that they are not

sufficient enough. As a result, it is possible that some knowledge graphs is not sufficient enough

to solve the problem by itself. But if we combine it with the knowledge from the pre-trained

LMs, we can solve the problem.

2. The “With Knowledge” model can achieve good performance after seeing a small number of
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(a) Without Knowledge

Training Task
Testing Task

Hard PCR CommonsenseQA COPA ATOMIC
(151 / 1,624) (40 / 424) (22 / 83) (712 / 4,525)

Hard PCR (21 / 203) 56.29 / 50.31 40.00 / 52.83 54.55 / 45.78 39.75 / 47.89
CommonsenseQA (4 / 53) 56.95 / 48.03 70.00 / 52.35 36.36 / 50.60 52.95 / 46.34
COPA (4 / 10) 45.03 / 49.82 45.00 / 50.47 59.09 / 46.99 55.62 / 54.43
ATOMIC (90 / 565) 40.40 / 49.94 65.00 / 56.72 59.09 / 56.63 72.75 / 75.99

(b) With Knowledge

Training Task
Testing Task

Hard PCR CommonsenseQA COPA ATOMIC
(151 / 1,624) (40 / 424) (22 / 83) (712 / 4,525)

Hard PCR (21 / 203) 55.63 / 50.98 57.50 / 40.57 59.09 / 49.40 48.74 / 48.62
CommonsenseQA (4 / 53) 51.66 / 49.38 95.00 / 42.92 68.18 / 59.04 95.36 / 69.70
COPA (4 / 10) 45.69 / 48.28 72.50 / 60.61 86.36 / 67.47 87.64 / 74.01
ATOMIC (90 / 565) 45.03 / 51.23 92.50 / 69.34 95.45 / 78.31 98.03 / 83.14

Table 11.5: Generalization ability demonstration. We report the performance on both the clean
dataset (i.e., only questions with helpful knowledge are selected for training and testing) and full
dataset to show the generalization ability before and after the slash, respectively. Number of train-
ing and testing instances are in brackets.

examples. This suggests that if we only want to learn to do the inference over commonsense,

we may only need a few training examples.

3. As shown by the “Answer Only” experiment, CKBQA also inherits the artifact from previous

datasets. As a common phenomenon in human-crafted commonsense reasoning datasets, such

artifact significantly influences the reliability of the learned models. Based on our experiment

results, even though it is hard to fully get rid of the artifact, we can minimize its influence by

controlling the training data size, which suggests that the few-shot learning setting might be the

more fair setting for both CKBQA and other commonsense reasoning datasets.

4. Answering “I do not know” is a reasonable task if enough training data is provided. However, it

is still challenging for our current naive model to distinguish whether the knowledge is helpful

or not under the few-shot learning setting.
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Figure 11.4: CKBQA Case Study. Mapped eventualities for the question and answers are indicated
with blue and pink. Other eventualities are white. Edge weights are in brackets. We only show the
relevant part of the graph for the clear representation. All extracted eventualities are lemmatized,
we recover them for the ease of understanding.

11.6 Generalization Ability

An important assumption and motivation behind CKBQA is that even though the commonsense

could be enormous, the inference rules over commonsense knowledge should be limited. As a

result, even though we could not learn all the commonsense from limited training data, we can

learn how to conduct inference with several tasks and then generalize to others. In this section, we

conduct experiments with both the “Without Knowledge” and “With Knowledge” models to show

that with our unified formulation, we can gain such generalization ability across different tasks.

Specifically, to minimize the influence of the dataset artifacts, we follow the previous observation

and conduct our experiments with a few-shot learning setting (i.e., we randomly selected 10% of

the data for training, 10% for development, and 80% for testing). Also, to clearly show the effect

of the supporting commonsense KB, we conduct experiments on two settings: (1) Helpful Subset:

We only train and test the model on questions, where the supporting graph is annotated as helpful;

(2) Full Set: We train and test the model with the whole dataset. We try to train the model with

questions from a specific task and test it on all tasks. The results are presented in Table 11.5.

Strong and moderate generalization settings are indicated with the green and orange background,

respectively.

From the results, we can see that the knowledge can help models to generalize well among

CommonsenseQA, COPA, and ATOMIC. The only exception is HardPCR. This is mainly because

the inference needed for solving HardPCR is more complex than the other tasks. As shown in

Figure 11.4. For the HardPCR example, two paths can be found relevant to question: (1) “I
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am drunk”→Co_Occurrence→“I hit someone”; (2) “I am drunk”→Co_Occurrence→“That is not

fair”→Co_Occurrence→“You kick me”. For the correct inference, we need to know when there is

a conflict, we should trust the one-hop inference more because the additional node in the two-hop

path may introduce extra noise. As a comparison, for other tasks, the main inference we need is

to find the relevant paths, which is relatively easy. In general, the observed generalization ability

is encouraging because if we can learn a good model on CKBQA, based on the assumption that

there exists limited types of inference, potentially we can solve any commonsense reasoning tasks

as long as the needed inference type is covered by CKBQA . At the same time, we also notice

that current models still cannot learn complex inference (i.e., compare multiple paths) with few

examples, and we leave how to solve that problem as the future work.
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CHAPTER 12

CONCLUSION AND REMAINING CHALLENGES

In this thesis, we focus on the commonsense reasoning task. To propose a robust and explainable

commonsense reasoning system, we first leverage the Winograd Schema Challenge [72] to conduct

an in-depth diagnosis of current data-driven commonsense reasoning models. Experimental results

show that even though current deep models can achieve high performance on standard benchmarks,

they still cannot fully understand the reason behind the predictions. An important reason behind

this is that we do not have a clear understanding of commonsense and how we should represent

them. As a result, we can only treat the commonsense as a black box.

To shed some light on this challenging question, we propose to understand commonsense from

the angle of selectional preference and represent commonsense knowledge with higher-order se-

lectional preference over eventualities. Following this methodology, we develop a large-scale

eventuality-centric commonsense knowledge graph ASER. Extensive evaluations are conducted

to demonstrate the quantity and quality of ASER. After that, to demonstrate the collected knowl-

edge in ASER is indeed commonsense, we conduct experiments to show the transferability from

the selectional preference knowledge in ASER to human-defined commonsense knowledge.

As it is infeasible for a single modality like text to cover all the commonsense, we also explored

how we can leverage other modalities to better acquire the selectional preference-based common-

sense knowledge. Specifically, we first propose a multiplex word embedding model to capture

selectional preference knowledge. After that, we introduce how to utilize the analogous property of

eventualities and the support of other knowledge bases (i.e., WordNet) to generalize the knowledge

about observed eventualities to unseen ones. Last but not least, we investigate the possibility of

acquiring causal knowledge about daily eventualities from the time-consecutive images.

In the last part of this thesis, we also try to apply the structured commonsense for downstream

natural language understanding tasks. We first investigate how to jointly use the structured knowl-

edge and language representation models for better pronoun coreference resolution. After that, we

introduce a new commonsense inference learning paradigm: Commonsense knowledge base ques-

tion answering (CKBQA). Experiments on CKBQA show that with our formulation, even though
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inference over commonsense knowledge is challenging, models can learn to conduct simple infer-

ence after training with a few examples. Besides that, the learned model also demonstrates the

encouraging generalization ability across tasks, which was not observed in previous commonsense

reasoning models.

Even though this thesis has answered several questions about how we should represent, acquire,

and apply the commonsense knowledge, there is still a long way to go for us to fully solve the

commonsense reasoning problem, which requires us to solve the following challenges:

1. Evaluation: The first challenge we are still facing is the lack of a good evaluation system.

Unlike other tasks, most current commonsense reasoning tasks (e.g., Winograd Schema Chal-

lenge [72]) are not directly evaluating models’ commonsense reasoning abilities. Instead,

they are a kind of approximation. Take WSC as an example, many research has discovered

that current models can bypass the essential commonsense reasoning and solve the questions

with other information [34]. It is quite often that we are just solving a “dataset” without

solving the underlining “task” we truly want to solve.

2. Storage and Computation Efficiency: As aforementioned, ASER has 438 million eventual-

ities and 648 million edges. Such a large scale guarantees the coverage of ASER, but it also

brings a huge burden for storage and computation. Our current hardware architecture and

inference algorithms still cannot support fast inference and response. We can try to address

this issue from two angles: (1) Better hardware architecture; (2) Better Knowledge graph

organization.

3. Scope of Reasoning: The last critical challenge we are facing is the unclear scope of com-

monsense reasoning. For example, is knowledge retrieval counted as part of the reasoning?

The lack of a formal definition of the scope of commonsense reasoning could bring huge

ambiguity for both the evaluation and model design.

To conclude this thesis, even though commonsense reasoning is still very challenging, it is a

task that we must solve to achieve the strong artificial intelligence. I hope that the methodology

and techniques we proposed in this thesis could bring us one step closer to the final goal.
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